Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия процесса разложения соединений

    Методическая ошибка — одна из наиболее трудно поддающихся учету систематических погрешностей химического анализа, которая складывается из погрешностей отдельных химических операций. Ни процессы разложения, ни процессы синтеза химических соединений, равно как и процессы разделения компонентов, которые всегда связаны с образованием новых фаз, никогда не проходят до конца. Стремление любой физико-химической системы к максимуму энтропии и минимуму энергии Гиббса всегда как бы- противодействует стремлению аналитика-экспериментатора выделить полностью определяемый компонент и нацело превратить его в аналитически активное соединение. По той же причине даже условие практической полноты образования и выделения соединений определяемого компонента никогда не гарантирует его чистоты от примесей других компонентов. [c.46]


    Методическая ошибка — одна из наиболее трудно-поддающихся учету систематических ошибок химического-анализа, которая складывается из ошибок отдельных химических операций. Ни процессы разложения, ни процессы синтеза химических соединений,, равно как и процессы разделения компонентов, которые всегда связаны с образованием новых фаз, никогда не проходят до конца. Стремление любой физико-химической системы к максимуму энтропии и минимуму свободной энергии всегда как бы противодействует стремлению аналитика-экспериментатора выделять нацело определяемый компонент и нацело превращать его в аналитически активное соединение. По той же причине даже условие практической полноты образования и выделения соединений определяемога компонента никогда не гарантирует его чистоты от примесей других комйонентов. Труд химика-аналитика — это, образно говоря, постоянная борьба с тенденцией хаоса, равновероят-нрго распределения и перемешивания компонентов труд аналитика — созидательный труд, направленный на уменьшение энтропии и получение информации от химико-аналитической системы. Вполне естественно, что работа подобного рода отягощена помехами принципиального характера.  [c.30]

    Среди различных методов сравнительного расчета термодинамических параметров химических реакцйй и других процессов своеобразное место занимают методы, основанные на сопоставлении этих процессов не при одинаковой температуре, а в условиях, от-вечаюпгих одинаковым значениям их констант равновесия (или, в более общей форме, одинаковым значениям AG°IT = — R In К). Сюда относятся, например, процессы испарения жидкостей при температурах кипения их при атмосферном (или другом одинаковом) давлении, процессы термической диссоциации карбонатов при температурах их разложения при атмосферном (или другом одинаковом) давлении, термической диссоциации окислов и других соединений (в форме гетерогенных или гомогенных процессов), сопоставление стойкости разных кристаллогидратов при заданной влажности воздуха и др. Первым в хронологическом отношении обобщением в этой области, нашедшим широкое применение, явилось известное правило Трутона, относящееся к процессам испарения жидкостей. Ле Шателье и Матиньон обнаружили, что аналогичная закономерность имеет место и для процессов термической дуссоциации кристаллогидратов солей, аммиакатов, карбонатов и других веществ при температурах, при которых давление диссоциации их равно 1 атм. Равновесное изменение энтропии в этих условиях оказывается равным примерно 32 кал/(К-моль). То же можно вывести из формулы Нернста, устанавливая при этом некоторую зависимость величины АН°/Т от температуры, при которой давление диссоциации в данном процессе равно 1 атм. Далее было показаночто приближенное постоянство равновесных изменений энтропии имеет место и при других химических реакциях, если сопоставление ограничивать реакциями, достаточно однотипными, причем такая закономерность наблюдается не только для условий, когда константа равновесия равна единице, но и когда она при другом численном значении одинакова для этих реакций. [c.185]


    Гиббса для этой реакции AG j. —422600 — Т 167,8, в котором одинаковые знаки слагаемых показывают, что при всех температурах этот процесс остается экзоэргичным и константа его равновесия /Ср = рсо, даже при 0°С равна огромной, нереальной величине Kf=W . Из приведенного примера следует, что необратимые процессы описывают характеристиками и разного знака, т. е. необратимыми будут все экзотермические реакции, идущие с увеличением энтропии. Примерами необратимых реакций могут служить горение порохов, взрыв бризантных веществ и детонаторов, разложение перекисных соединений и т. д. [c.70]

    В какой мере это существенно для комплексных катализаторов, показывают результаты подсчетов энергии активации и энтропии активации для каталазного и оксидазного процессов, катализированных комплексами. В нашей лаборатории А. П. Сычевым, Р. Д. Корпусовой и автором были определены величины энергии активации для реакций разложения перекиси водорода, окисления пирогаллола и флороглюцина в присутствии различных комплексных соединений меди. В табл. 2 приведены данные измерений для разложения перекиси водорода и окисления пирогаллола и указаны значения энергии активации Е для реакций, протекающих без катализатора. [c.243]

    Для того чтобы процесс был спонтанным, т. е. чтобы соответствующая константа равновесия была велика (отвечая почти завершению реакции) или составляла около единицы (так чтобы получить удовлетворительный выход продуктов), AG должна иметь либо отрицательное, либо небольшое положительное значение. Для многих реакций при комнатной температуре TAS мало по сравнению с АН, и возможность или невозможность спонтанной реакции определяется величиной изменения теплосодержания. Именно поэтому, например, теплоты образования окислов металлов являются довольно падежной мерой их стабильности. Но большое увеличение энтропии при реакции (положительное Д5) может превышать большое увеличение теплосодержания (положительное АН — эндотермическая реакция) и приводить к отрицательному AG и, следовательно, вызывать спонтанный процесс. Более того, роль второго члена возрастает при повышении температуры. Так, при достаточно высокой температуре все химические соединения разлагаются на составляющие их элементы, несмотря на то что такие процессы обычно эндотермичны. Основная причина этого заключается в том, что такой процесс означает переход от более упорядоченного к менее упорядоченному состоянию AS положительно, и при достаточно высокой температуре TAS становится численно больше, чем АН. Дальнейшими примерами спонтанных процессов, которые являются эндотермическими, но связаны с увеличением неупорядоченности, оказываются также разложение твердого вещества на газообразные продукты, плавление твердого вещества и испарение жидкости. 3 качестве последнего примера можно указать на спонтанное эндотермическое растворение хлористого аммония в воде при растворении сильно упорядоченногс [c.186]

    Мак-Лафферти указывает, что наибольшим препятствием к однозначному определению молекулярной структуры масс-спектрометрическим методом служит возможность перегруппировки в процессе ионизации. Он различает два типа перегруппировок — случайные и специфические. Процесс ионизации был рассмотрен с позиций теории переходного состояния. При этом Филд и Франклин указывали, что энергия акгивации разложения или перегруппировки Л1олекулярного иона мала по сравнению с энергией активации разложения или перегруппировки нейтральной молекулы и что скорость перегруппировки зависит от энергии и энтропии активированного комплекса. Случайные перегруппировки происходят, если несколько возможных направлений реакции равноценны по энергии и энтропии, так что образуется несколько перегруппировочных ионов, обычно в небольших количествах. Если благоприятно одно какое-либо направление, как правило, протекает специфическая перегруппировка, и в спектре преобладает перегруппированный ион. Присутствие в молекуле функциональных групп способствует специфической перегруппировке. Для соединений фтора наблюда- [c.276]

    Эндотермические реакции, идущие с увеличением энтропии, пшроко распространены в природе. Типичным процессом такого рода является растворениё твердого вещества, испарение, диссоциация и т. д. Сюда же следует отнести тфоцессы разложения высокомолекулярных веществ.. К эндотермическим реакциям относятся процессы образования линейной полимерной серы и селена. Известно, что при к01шатной температуре эти соединения существуют в виде восьми-Членных циклов, а при нагревании выше определенной температуры переходят в пластическое состояние. Предполагают, что это обусловлено разрывом кольца и образованием линейных полимерных молекул. Если это действительно так, то сера и селен являются единственными соединениями, при полимеризации которых возрастает и энтальпия, и энтропия системы. Термодинамические свойства серы и селена 1фиведены ниже  [c.146]

    Скорость перегруппировки зависит от структуры, причем активность падает при замене цианогруппы алкоксикарбонильной, так что малононитрилы наиболее, а малоновые эфиры — наименее активны. В приведенной выше общей формуле радикалы К могут быть алкильными группами, но в случае циннамильных соединений наблюдается только разложение и никаких продуктов перегруппировки выделить нельзя. Простейший пример — винилаллилмалоновый эфир, который был успешно перегруппирован [224]. Присутствие активирующих групп, однако, несущественно З-фенил-1,5-гексадиен количественно перегруппировывается в 1-фенил-1,5-гексадиен, а его 3-метильный аналог претерпевает подобное превращение при повышенных температурах, хотя и с несколько меньшим выходом (95%), причем в этом случае была установлена частичная обратимость этой реакции [225]. Внутримолекулярная природа этой реакции вытекает из отсутствия смешанных продуктов, если нагреваются вместе более чем одно винилаллильное соединение, и из наблюдения, что аллильная группа обращается в тех случаях, когда она асимметрична. В отдельных случаях были измерены энергии активации и энтропийные члены реакции, причем значительные отрицательные величины энтропии активации подтверждают предлагаемое для этой реакции циклическое переходное состояние, которое рассматривается как согласованный процесс, хотя имеются отдельные факты, указывающие, что образование и разрыв связи могут происходить не совсем одновременно [226]. [c.251]



Смотреть страницы где упоминается термин Энтропия процесса разложения соединений: [c.29]    [c.317]    [c.488]    [c.251]    [c.107]   
Методы сравнительного расчета физико - химических свойств (1965) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Энтропия процесса

Энтропия соединения



© 2025 chem21.info Реклама на сайте