Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

выделением NHs азотсодержащих соединений

    Описан метод выделения азотсодержащих соединений из нефти и идентификации карбазола. [c.193]

    Эти же методы исследования были использованы для анализа гидрогенизатов смол. Так, при помощи хроматографического метода определен групповой состав жидкофазного гидрогенизата низкотемпературной смолы из черемховского угля состав асфальтенов 1, выделенных из угольного гидрогенизата. Из жидкофазного гидрогенизата бурого угля удалось выделить 8 парафиновых углеводородов, 6 полициклических углеводородов, 20 азотсодержащих соединений, 9 фенолов. Подробно исследован состав низкотемпературного гидрогенизата (процесс ТТН) буроугольной смолы. [c.164]


    Индивидуальные вещества, выделенные из продуктов деструктивной гидрогенизации азотсодержащих соединений, приведены в табл. 50. [c.213]

    Методы выделения примесей гетероциклических соединений, основанные на особенностях взаимодействия их с расплавами едкого кали. При этом азотсодержащие соединения (такие,- как карбазол и индол) образуют соли калия, растворимые в расплаве [c.297]

    Азотсодержащие соединения. Выделение и разделение азотсодержащих соединений осуществляется с помощью методов, основанных на межмолекулярных взаимодействиях. Азотсодержащие соединения делятся на нейтральные и основного характера. Для их выделения используют как методы аналогичные по технике исполнения для анализа углеводородов, серу- и азотсодержащих соединений нефтей, так и методы, используемые для селективного выделения нефтяных азотсодержащих оснований и отдельных представителей нейтральных азоторганических соединений.  [c.89]

    Анализ группового состава гетероатомных соединений может быть осуществлен с помощью химических и физико-химических методов без предварительного выделения их из дистиллята или из адсорбционных смол. Схемы анализа основаны на индикаторном, потенциометрическом, полярографическом и амперометрическом титровании, УФ-спектрометрии и других методах. Определение сульфидов и азотсодержащих соединений основного характера в дистиллятах и концентратах проводится потенциометрическим титрованием [256]. [c.144]

    Иногда подвергаемое риформингу сьфье содержит лигроин, полученный термическим коксованием высококипящих нефтяных остатков. В состав такого лигроина входят олефины, а также соединения серы и азота. В процессе риформинга олефины гидрируются, а серу- и азотсодержащие соединения удаляются. Реакция риформинга сильно экзотермична, и выделение тепла обычно регулируется смешиванием продукта коксования с прямогонным лигроином. В результате для гидрирования олефинов необходим избыточный водород, но общий расход его обычно не превышает 0,5 молей на 1 моль исходного сырья. [c.241]

    Данная реакция протекает вследствие того, что интенсивное выделение тепла и ионизация воздуха при разряде молний приводят к разрыву молекул Nj. Эта простая реакция, включающая образование азотсодержащего соединения из Nj, является примером связывания (фиксации) азота. Как было рассказано в гл. 14, первым промышленным способом связывания азота был процесс Габера. В процессе Габера N2 из атмосферного воздуха и Н2 (последний обычно получают из СН4, входящего в состав природного газа ) соединяются с образованием NH3  [c.315]


    Второй раздел практикума ставит своей целью познакомить студентов с особенностями выделения, фракционирования, идентификации и количественного определения различных природных азотсодержащих < оединений. белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов и пр Предлагаемые экспериментальные работы включают аиболее широко используемые в лабораторной практике современные методы разделения и анализа этих соединений различные виды электрофореза, хроматографии, спектрофотометрии, колориметрии и др. Работа проводится как на готовых коммерческих препаратах высоко- и низкомолекулярных азотсодержащих соединений, так и на препаратах, выделяемых студентами из различных тканей лабораторных животных. [c.79]

    При поедании животными крахмал, а в некоторых случаях также целлюлоза разрушаются, давая снова исходную (+)-глюкозу. Последняя с током крови переносится в печень и там превращается в гликоген, или животный крахмал в случае необходимости гликоген снова может быть разрушен до (+)-глюкозы. (-Ь)-Глюкоза переносится током крови в ткани, где она окисляется в конце концов в двуокись углерода и воду с выделением энергии, полученной первоначально с солнечным светом. Некоторое количество (- -)-глю-козы превращается в жиры, а некоторое реагирует с азотсодержащими соединениями с образованием аминокислот, которые, соединяясь друг с другом, дают белки, являющиеся субстратом всех известных нам форм жизни. [c.931]

    Затем простой ректификацией из изопрена удаляют примеси более летучих алкинов (2-бутин, 3-метил-1-бутин). Выделенный изопрен дополнительно очищают, так как требования к его чистоте для стереорегулярной полимеризации очень жесткие. Допустимое содержание примесей в изопрене в 10—20 раз ниже, чем в бутадиене для производства бутадиенового каучука. Сильными каталитическими ядами при полимеризации изопрена являются циклопентадиен, 1-алкины, карбонильные, серо- и азотсодержащие соединения — их допустимое содержание исчисляется десятитысячными долями процента. [c.109]

    Нейтральные азотсодержащие соединения извлекают из нефтей или нефтепродуктов хлорным железом, образующим через связь железа с атомом азота комплексные соедршения. Последние разлагают растворами щелочи с выделением нейтральных азотсодержащих соединений в свободном виде. Выделяемые из нефтей или нефтепродуктов азотсодержащие соединения подвергают ректификации на узкие фракции и идентифицируют с помощью спектральных или хромато-масс-спектральных методов. Поскольку концентрация азотсодержащих соединений в топливных и масляных фракциях невелика (не более 0,05-0,10 масс. %), то они оказывают слабое положительное влияние на термоокислительную стабильность топлив. [c.731]

    Нитраты и нитриты, находящиеся в пробе, восстанавливают водородом в момент выделения до аммиака. После восстановления смесь минерализуют серной кислотой с сульфатом калия при 345—370° С при каталитическом действии сульфата ртути. Этим способом все азотсодержащие соединения переводят в гидросульфат аммония. Минерализованную пробу подщелачивают, отгоняют аммиак, собирая его в раствор кислоты, и определяют титрованием. [c.111]

    Следует отметить, что в выделенных хроматографическим методом фракциях ароматических углеводородов присутствуют примеси серу- и азотсодержащих соединений. [c.37]

    Все выделенные азотистые соединения улучшили в оптимальных концентрациях термоокислительную стабильность предварительно обессмоленных горючих (рис. 75). При добавлении азотистых соединений к обессмоленному горючему ТС-1 коррозия бронзы и оптическая плотность практически не изменялись, несколько уменьшилось образование смолистых отложений на бронзе. Кривые изменения коррозии, осадкообразования и оптической плотности имеют отчетливый минимум при содержании азотсодержащих соединений 0,05—0,09% в топливе Т-5 и 0,04—0,06% в топливе Т-1. С повышением содержания азотсодержащих соединений в топливе сверх оптимального, увеличивается коррозия, образование смол и осадков. [c.173]

    Выделенные смолистые вещества добавляли в разных концентрациях к соответствующим обессмоленным топливам, затем исследовали процессы образования твердой фазы в смесях при 150° С. По своему влиянию на термоокислительную стабильность топлива ТС-1 различные фракции смолистых веществ весьма отличны друг от друга (рис. 77). С добавлением к обессмоленному топливу смол, образовавшихся в процессе хранения, значительно увеличивается осадкообразование при нагреве. Осадкообразование в топливе увеличивается с повышением концентрации смол и имеет минимум при концентрациях 0,04—0,07%, наличие которого объясняется присутствием азотсодержащих соединений, тормозящих образование не только смолистых веществ, но и нерастворимых осадков. Коррозионная активность в присутствии смолистых веществ, выделенных после длительного хранения, резко повышается. [c.178]


    Кроме сераорганических соединений в составе реактивных топлив присутствуют азоторганические соединения. Автор впервые выделил и изучил влияние этих соединений на термоокислительную стабильность топлив. Выделенные азотсодержащие соединения были добавлены к предварительно обессмо-ленным топливам и в этих смесях были изучены процессы образования осадков при 150° С. [c.173]

    Применительно к процессам каталитического гидрооблагораживання остатков знание общих закономерностей превращения отдельных гетероатомных соединений может быть полезно только в части того, что, например, сера из любого серусодержащего соединения удаляется в виде сероводорода, азот из азотсодержащих соединений удаляется в виде аммиака, кислород из кислородсодержащих компонентов в виде воды и пр. Скорость тех или иных реакций превращения гетероатомных соединений может быть оценена лишь косвенно на основе изучения элементного состава сырья и продуктов, а также замером количества вьщелив-шегося сероводорода, аммиака, воды, высадившихся металлов на поверхность катализатора. Интенсивность реакций гидрирования может быть оценена также косвенно по изменению содержания водорода и углерода в жидких продуктах реакции. В связи с этим, для выявления эффективности процессов каталитического гидрооблагораживання нефтяных остатков может быть применен принцип оценки брутто-реакций . Однако, ввиду многообразия остатков, выделенных из различных типов нефтей, характеризующихся различным содержанием компонентов с надмолекулярной структурой (асфальтенов, смол), знание только данных по элементному составу недостаточны. Механизм превращения нефтяных остатков тесно связан со структурными изменениями сырья при нагреве и контакте с каталитической поверхностью. [c.47]

    В сернистых концентратах, кроме сернистых соединений, имелись примеси азотистых и кислородных соединений. Присутствие этих примесох можно отнести и за счет несовершенства применяемой для выделения сернистых соединении методики и за счет возможного нахождения в смолах веществ, совмещающих н одной молекуле серу-, кислород- и азотсодержащие группы. Разумеется, характеристика выделенных сернистых концентратов в значительной степени обусловливается способом выделения. [c.71]

    Образование комплексов. Азотсодержащие соединения нефтей за счет неподеленных пар электронов азота способны образовывать донорно-акцепторные связи и комплексные соединения с галогенами, солями металлов ртути, цинка, олова, хрома(П1), меди (II) и других, карбонилами железа [207]. Однако из-за наложения электрических моментов диполя серу-, азот- и кислородсодержащих соединений, например для иодидов, амино-, тио- и ал-коксицодидов (6,67—33,33) 10 Кл-м с помощью комплексообразования невозможно селективное выделение или разделение этих классов соединений. [c.91]

    Кислородсодержащие соединения. Проблема выделения кислородсодержащих соединений из нефтяных фракций наиболее полно разработана для соединений кислого характера (кислот, фенолов), но недостаточно для нейтральных соединений (пероксидов, спиртов, эфиров, альдегидов, кетонов и иолигетероатомных соединений). Нейтральные соединения выделяются из смесей с углеводородами хроматографически, однако в концентраты наряду с кислородсодержащими попадают сбру- и азотсодержащие соединения. [c.91]

    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]

    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    Азотсодержащие соединения, выделенные аналогичным методом из дизельного- топлива, полученного гидрокрекингом гудрона арланской нефти, представлены производными хинолина, анилина, бициклическими соединениями типа циклогексилпиридина (I), ин-долина(П), 1,2,3,4-тетрагидрохинолина(1П), 2,3-триметилен- (IV) и 2,3-тетраметиленпиридина (V)  [c.255]

    К нейтральным азотсодержащим соединениям, не содержащим в молекулах иных гетероатомов, кроме атома азота, и выделенным из нефти, относятся индолы, карбазолы и их нафтеновые и серусодержа-1ДИ6 производные.  [c.22]

    ДЕМЕТАЛЛИЗАЦИЯ нефтяного сырья, удаление из остаточных продуктов дистилляции нефти (мазута, гудрона) и тяжелых нефтей металлоорг. соед. с выделением металлич. примесей (преим. V и Ni, а также Mg, Fe, Со, u и др.). При Д. обычно происходит также выделение смолисто-асфаль-теиовых в-в, частично серо- и азотсодержащих соединений. Цель Д.-углубление очистки сырья, увеличение срока службы катализаторов, повышение эффективности процессов нефтепереработки, улучшение качества товарных продуктов. Наиб, распространены след, методы Д. деасфальтизация-обработка сырья орг. р-рителями (напр, при обработке гудрона западносибирской нефти легкой бензиновой фракцией или бутаном степень удаления металлов соотв. составляет 44 и 77% по массе) гидродеметаллизация-гидро-генизац. переработка нефтяных остатков термоконтактная Д.-термич. обработка сырья с осаждением металлов на пов-сти контакта фаз. [c.20]

    Если при сжигании в кипящем слое много меньше единицы, то свободного кислорода в продуктах сгорания нет. В этом случае азотсодержащие соединения топлива реагируют с углеродом, СО, Нг и другими углеводородными газами с образованием молекулярного азота. Константа равновесия реакции 2N0 + == = N2 + СО2 при характерных для КС температурах чрезвычайно велика (6,86-10 при 1000 К), т. е. равновесие этой реакции сильно сдвинуто вправо. Даже при максимальном содержании СО2 в продуктах сгорания, соответствующем ав=1, содержание N0 в равновесии с углеродом по указанной реакции при 1000 К составляет 10 г/м . Практически это означает, что углерод топлива (полукокс) вместе с СО и Н2 являются активными восстановителями оксидов азота. Особенно активным является только что образовавшийся ( in situ ) полукокс [37, 38], имеющий на поверхности много активных центров, возникших при разрушении структуры угля в процессе выделения летучих. Именно поэтому в продуктах сгорания углей (и особенно полукокса, в котором мало летучих) с в <С 1 оксиды азота практически отсутствуют 39]. [c.227]

    Белки в истинном смысле этого слова, т. е. азотсодержащие соединения, состоящие, по меньщей мере, из одной аминокислотной цепи, очень распространены в природе. Жизнь без белков невозможна, и растительный мир, одомащненный в сфере земледелия, или дикий содержит их в значительном количестве. Подсчитано [5], что даже без учета листвы деревьев и морских водорослей природа могла бы обеспечить белком каждого человека на планете в количестве 125 г в день, т. е. намного выще потребности. К сожалению, эти белки при выделении из растений сопровождаются множеством антипитательных веществ, иногда даже токсичных, и в результате белки становятся непригодными, недоступными для человека и некоторых видов животных. [c.19]

    В ходе сульфитных варок лигнин сульфируется и переходит в варочный раствор в виде солей лигносульфоновых кислот - лигносуль-фонатов. Лигносульфонаты могут быть выделены из раствора обработкой солями, кислотами, органическими растворителями и различными ароматическими азотсодержащими соединениями. В промышленности получают распространение безреагентные методы выделения с использованием мембран. Обычно на производстве отработанные варочные растворы подвергают переработке с целью утилизации углеводов, а оставшийся раствор упаривают с получением концентратов, содержащих лигносульфонаты. При регенерации химикатов отработанные варочные растворы упариваются и сжигаются. Лигносульфонаты и продукты их модифицирования могут быть использованы для пластификации цементов и бетонов, в качестве диспергаторов, поверхностно-активных веществ, активных добавок, при синтезе полимерных материалов, для производства ванилина и других химических продуктов. [c.372]

    Креатинин образуется из креатиифосфата и является постоянной составной частью мочи. За сутки с мочой выделяется 0,5—2,0 г (4,4—17,6 ммоль/сут) креатинина, что составляет 2—7% азота всех азотсодержащих соединений мочи. Количество выделенного с мочой креа-тннина зависит от интенсивности процессов распада белков тканей организма и от содержания креатинина в пище (его много в мясной пище)  [c.207]

    Не менее сложный процесс описывается в патенте (278] для получения реактивного топлива. Здесь также используется газойль каталитического крекинга, содержащий бициклические ароматические углеводороды, который перегоняют на ряд 33 градусных фракций, выкипающих в интервале 230—300°. Фракции подвергают первичному гидрированию в присутствии водорода и серостойкого кобальт-молибденового катализатора, в результате чего серо- и азотсодержащие соединения превращаются в более низкокипящие соедипения, а основная маоса бициклических ароматических углеводородов — в тетралины. После отделения серо- и азотсодержащих соединений, остаток гидрируют вторично в присутствии более активного катализатора — платина на окиси алюминия, причем тетралины превращаются 3 декалины. Фракции, (Выделенные из продуктов вторичного гидрирования, содержащие декалины, представляют собой компоненты реактивных топлив с весовой теплотворной способностью 1000 ккал кг п объемной — 8300 ккал л. [c.109]


Смотреть страницы где упоминается термин выделением NHs азотсодержащих соединений: [c.116]    [c.296]    [c.233]    [c.342]    [c.419]    [c.92]    [c.205]    [c.239]    [c.157]    [c.20]    [c.165]    [c.329]    [c.177]   
Каталитические свойства веществ том 1 (1968) -- [ c.738 , c.884 , c.921 , c.1010 , c.1064 , c.1121 , c.1122 , c.1239 ]




ПОИСК







© 2024 chem21.info Реклама на сайте