Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разложение метана

Рис. 1Х-54. Схема печи для каталитического разложения метана водяным паром. Рис. 1Х-54. <a href="/info/21312">Схема печи</a> для <a href="/info/328363">каталитического разложения</a> метана водяным паром.

    РАЗЛОЖЕНИЕ МЕТАНА — КИНЕТИКА [c.63]

    Пример У1-14 [12]. Рассчитать Д/х° для реакции разложения метана при температуре Т = 1000 К  [c.147]

    Термическое разложение метана не вкл ю-ч бт принципиально новых факторов по сравнению с термическим разложением других углеводородов. Однако оно имеет некоторые особенности Тот факт, что метан не имеет связей С-—С заставляет учитывать частные аспекты термодинамики, механизма и кинетики реакций- с другой стороны, температуры, при которых эта реакция протекает интенсивно, определяют целый ряд технологических особенностей, отличающих этот процесс от процессов разложения Термическое разложение метана тесно связано с химической промышленностью (производством ацетилена, сажи, водорода). [c.97]

    Существует несколько вариантов описанного метода, касающихся разложения метана на водород и ацетилен (например, в электрической печи — см. рис. 1Х-25). [c.57]

    В производстве ацетилена при нагревании до высоких температур газовых реагентов (природный газ, кислород) в случае аварии, например прогорания труб подогревателей, возможны образование взрывоопасных смесей, расплавление футеровки аппаратов и т. д. Для безопасного нагревания природного газа необходимо ограничивать этот процесс определенными температурными пределами, так как при высоких температурах может протекать крекинг метана до образования сажи. В свою очередь, наличие сажи может вызвать преждевременное горение метано-кислородной смеси, забивку трубопроводов и т. д. Заметное разложение метана наблюдается при 690—750 " С, поэтому его нагревают обычно до температуры не выше 700 °С. [c.95]

    Несмотря на то, что положительные катализаторы для производства ацетилена из метана неизвестны, многие вещества обладают отрицательным влиянием на выходы ацетилена. Эти вещества, по-видимому, промо-тируют разложение метана на углерод и водород. К таким веществам относятся обычно металлы железо, никель, кобальт, медь, платина и палладий [80, 95]. Отсюда следует, что аппаратура для термического крекинга метана не должна включать такие металлы или их окислы. [c.70]

    В определенных условиях метан способен к термическому разложению с образованием водорода и углерода. Варьируя условия реакции (температуру, продолжительность нагревания, давление, состав исходной смеси и т. д.), можно при термическом разложении метана получить, наряду с водородом и углеродом, другие продукты. Относительные скорости разложения метана (по выходу водорода) в кварцевой трубке при- отсутствии катализаторов, атмосферном давлении и длительности нагревания 10 мин приведены ниже  [c.24]


    Если допустить поэтому, что образование ацетилена пз метана проходит через стадию образования промежуточного продукта — этилена, то разложение метана может рассматриваться без обратных реакций. [c.61]

    Роль метильных радикалов. Райс и Дулей [64] для объяснения разложения метана предложили механизм с участием метильных радикалов в качество первичных продуктов  [c.74]

    Вращается только в этан, этилен и водород, то нарастание давления в действительности является показателем образования этилена, а не исчезновения метана. Если образуется комплекс продуктов (этан, этилен, ацетилен, углерод и водород), то нельзя установить связь между увеличением давления и разложением метана без полного анализа всех полученных продуктов. [c.76]

    Метиленовые радикалы. Механизм разложения метана через метиленовые радикалы быJ[ впервые предложен Касселем [44]. По его схеме полное разложение метана на углерод и водород происходит в следующие пять этапов  [c.72]

    При высокотемпературном разложении метана и этана (пиролизе, электрокрекинге) процесс может протекать по уравнениям  [c.289]

    Процесс можно проводить контактированием паров углеводородов с расплавами металлов (см. табл. 19). При использовании в этом процессе расплава железа образующийся углерод поглощается расплавом, который затем регенерируется продувкой его кислородом. При проведении этого процесса в расплаве меди образующаяся сажа сепарируется. Температура процесса конверсии метана в расплавах очень велика и составляет 1200—1500° С. Однако не совсем ясно, имеет в данном случае место какой-либо каталитический эффект или разложение метана протекает как гомогенная некатализируемая реакция. [c.38]

    Приведенные в табл. 4 данные показывают определенное возрастание /( J в зависимости от температуры. Кроме того, при заданной температуре наблюдается определенное уменьшение к- с увеличением глубины реакции, т. е. продукты реакции ингибируют разложение метана. Средние величины / 1 представлены графически на рис. 2. в виде ] к относительно 1/7 . График наглядно показывает, что зависимость для к среднее соответствует данным статических опытов Касселя. По данным рис. 2 получаем уравнение  [c.66]

    Последняя удовлетворительно объясняет наблюденные результаты. Следует отметить, что данный механизм говорит в пользу механизма разложения метана Касселя. [c.85]

    В интервале температур от 800 до 1100° С при пиролизе бензола наблюдаются небольшие количества метана и следы ацетилена. Количество образующегося метана, примерно, такого же порядка, как и при нагревании углерода с водородом по-видимому, такая реакция, сопровождающая разложение бензола при высоких температурах, является основным источником образования метана. Интересно, что при нагревании так называемого аморфного углерода с водородом не получаются ароматические углеводороды, а вместо них благодаря реакции на ребрах кристаллов графита образуется метан. Можно считать, в свою очередь, что следы ацетилена, образующегося в процессе пиролиза бензола при высоких температурах, обусловлены скорее вторичным разложением метана, чем прямой диссоциацией бензола до ацетилена. Последняя реакция лишь предполагается некоторыми исследователями [4], однако она трудно доказуема. Ацетилен почти полностью разлагается при 750° С при этом получаются ароматические углеводороды, (в значительных количествах бензол) кокс и газы, среди которых обнаруживаются в убывающем порядке водород, метан и этилен [10]. Поскольку этилен является важным продуктом разложения ацетилена, а не самого бензола, то есть основания предполагать, что разложение бензола до ацетилена не относится к одной из основных реакций этого углеводорода. С другой стороны, [c.96]

    Природа окислителя. За исключением термокаталитического разложения метана (на элементы), протекающего без окислителя, [c.32]

    Основной реакцией, приводящей к образованию ацетилена, является разложение метана  [c.7]

    За счет тепла электрической дуги происходит разложение метана с образованием ацетилена. На выходе из реакционной зоны газы крекинга по трубе 5, снабженной водяной рубашкой, поступают в зону закалки, где охлаждаются до 150—200°С. Состав газов крекинга был приведен в табл. 2 (стр. И). [c.13]

    Широко исследовано каталитическое действие металлов на разложение метана по реакции [c.24]

    Некоторые металлы заметно снижают начальную температуру разложения метана. Наиболее активным и. них является никель, вызывающий разложение метана уже при 390 °С. Присутствие высших углеводородов и галоидов в метане промотирует его разложение. [c.24]

    Теоретические и технологические проблемы осуществления термического разложения (дегидрирования, крекинга) для производства этилена и пропилена (из этана, пропана и жидких углеводородов), изобутилена из изобутана, изопрена из изопентана, бутадиена из я-бутана стирола и метилстирола из этил- и изопропилбензола, дифенила из бензола и т. д, аналогичны. Все эти процессы, кроме термического разложения метана, относятся к нефтехимии. [c.97]


    Гомогенное окисление метана водяным паром или двуокисью углерода является в высшей степени эндотермической и относительно медленной реакцией. Скорость ее хорошо измерима при температуре около 1000° С, когда со значительной скоростью происходит также термическое разложение метана. Действительно, один из экспериментаторов [6] утверждает, что при температуре около 1000° С пар и метан непосредственно ые вступают в реакцию друг с другом, а в реакции участвуют более реакционно-способные продукты термического разложения мотана, которые и образуют окись углерода и водород. Среди легко выделяемых и идентифицируемых продуктов пиролиза метана следует отметить этилен и ацетилен [25, 26, 27 . Последние могут реагировать с водяным паром, образуя спирты, которые затем разлагаются с образованием окиси углерода, метана и водорода. Все это носит лишь предположительный характер, так как нет данных, подтверн дающих этот механизм. Реакция метана с двуокисью углерода является, по-видимому, еще более сложной, чем с водяным парол]. [c.311]

    Бон и Коуард [6] установили, что при температуре ниже 700° С разложение метана происходит с незначительной скоростью, а при температуре выше 700° С начальная скорость реакции имеет и-ный порядок, причем п намного больше 1,0, но первый порядок реакции достигается только нри увеличении глубины разложения. Ацетилен как продукт реакции образуется только в начале реакции, а затем быстро происходит его разложение на углерод и водород. [c.63]

    Холлидей и другие [35], [26] обнаруялилп, что водород сильно замедляет скорость разложения метана, сводя оо фактически до нуля при некотором определспном отношении  [c.63]

    Этот эффект однако незначитслоп прп температурах выше 1000° С из-за быстрого возрастания Жр с ростом температуры (рис. 1). Холлидей и другие заключают, что замедляющее действие водорода обусловливается его влиянием на разложение ацетплена, а не на разложение метана. [c.64]

    Возможность применения уравнения скорости реакции первого порядка для разложения метана была доказана главным образом работой Касселя [44]. Последний измерил изотермическую скорость разложения метана в кварцевых сосудах по повышению давления. Было установлено, что применение насадки или повышение давления приводило к уменьшению индукционного периода. Такое влияние давления и насадок вероятно в большей степени связано с проблемо11 теплообмена, чем с кинетикой, но из-за отсутствия экспериментальных данных это является пока только предположением. Кассель предложил применять уравнение (3) до тем- [c.64]

    Уравиоине (7) представляет собой уравнение разложения метана и большом интервале температур, давлений и различном составе сырья / , рассчитанное по уравнепию (7), является средней скоростью разложения при различных конверсиях. Таким образом, уравнение (7) совместно с уравнением (3) дают возможность опродолить глубину разложения метана. Необходимо также определять состав продуктов разложения, т. е. конверсию до ацетилена и этилена (особенно до ацетилена). [c.68]

    НОГО сырья, в частности метана. Сущность процесса окислительного пиролиза заключается в следующем. Подогретый метан и кислород подаются через горелку специальной конструкции в зону пиролиза реактора, где за счет сгорания части метана температура поднимается до 1400—1500° С. Благодаря большой объемной скорости газовой смеси (время пребывания газа в зоне реакции составляет 0,005 сек) при разложении метана образуются ацетилен, окись углерода и водород. Непосредственно после зоны пиролиза в реакторе расположена зона закалки, в которой реакционные газы резко охлаждаются внрыскиважием воды из форсунок. Быстрое охлаждение предотвращает разложение нестойкого при высоких температурах ацетилена. [c.15]

    Влияние давления и разбавления на конверсию метана до ацетилена и этилена. Чистая конверсия до ацетилена и этилена зависит от скорости нх образования из мотана и от скорости их разложения на углерод и водород. 1 сли предположить, что реакция разложения метана имеет первый порядок, тогда любое влияние давления должно объясняться его поздействпем па разложение этнлона и ацетилена. [c.68]

    Считается, что пиролиз метана проходит через стадии образования этана и этилона. Как будет показано дальше, первым устойчивым продуктом является этап. Так как процессы разложения этана и этилона будут рассмотроны отдельно, остановимся только на начальной стадии разложения метана, т. е. на стадии, водуш,ой к образованию этана. [c.71]

    Роль свободных радикалов при разложении метана. Для обнаружения свободных радикалов часто используется мотод с прпмопением окиси азота. Установлено [33], что добавление небольшого количества N0 приводит к уменьшению скорости реакции до некоторой предельной величины. Последующее добавление N0 после того, как установилась предельная скорость реакции, оставляет ее без изменения. Отсюда был сделан вывод, что N0 соединяется со свободными радикалами и способствует их удалению как реагентов. 1 .сли достигнута предельная скорость реакции, то это значит, что прореагировали все радикалы остаточная скорость реакции обусловливается только молезгулярным механизмом. [c.72]

    Гоббс и Гиншелт.вуд [34] исследовали влияние окиси азота па разложение метана. Они иашли, что эффективная длина цени равна 4,7 при 850° С и давлении метана 100 мм рт. ст. Максимальное ингибирование реакции наблюдалось при давлении N0 равном 3,2 мм рт. ст. Количественное влияние N0 еще не определено, что по-видимому, объясняется какой-то реакцией метана с окисью азота. Такой метод определения механизма свободных радикалов но дает сведений о природе образующихся радикалов. [c.72]

    Доказательства существования метиленовых радикалов при разложении метана были впервые представлены Мекком [48]. Он наблюдал радикалы спектроскопическим путем при разложении в кварцевом сосуде метана в интервале температур от 800 до 900° С. [c.73]

    В этих реазсциях полупериод жизни метиленового радикала оказался слишком большим, чтобы быть измеренным на их аппаратуре. Однако при разложении метана такой полупериод примерно равен времени, необходимому для того, чтобы пройти длину свободного пробега, т. е. [c.73]

    При термическом разложении метана можно получить такие ценные продукты, как водород, необходимый для ряда органических производств (гидрирование жиров, деструктивная гидрогенизация углеводородов, гидрпроваппе угля — см. ниже, главу XI) и сажу, широко применяемую в каучуковой нромышленностн в качестве наполнителя, а также для многих других целей. [c.245]

    Райс и другие [61, 62, 64, 65, 67] неоднократно пытались при разложении метана определить радикалы метилена, используя металлические зеркала . Но они обнаружили только радикалы метила, а но метилена. Робертсон и Эльтентон [16, 17], исследуя разложение метана с немощью масс-споктрометра, также обнаружили только радикалы метила. [c.75]

    Как указывает Лепдлер [45], увеличоппе давления является в данном случае мерой разложения метана. Если исходить из того, что метан пре- [c.76]


Смотреть страницы где упоминается термин Разложение метана: [c.406]    [c.62]    [c.71]    [c.74]    [c.74]    [c.81]    [c.84]    [c.434]    [c.16]    [c.98]    [c.99]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.229 ]




ПОИСК







© 2025 chem21.info Реклама на сайте