Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селен определение в природных

    Селен в природных водах встречается в четырехвалентной и шестивалентной форме в виде неорганических и органических соединений. Метод, описанный ниже, разработан Ламбертом, Артуром и Муром [27] и применим для определения 0,2—6,0 мкг/мл селена в природных водах. Метод включает процессы разложения органического вещества, дистилляцию селена для отделения от основной массы мешающих веществ, удаление йода, восстановление Se и маскировку большей части остающихся мешающих веществ. [c.390]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Метод применен для определения серы в металлах [466, 1449], стали [211, 1018, 1380], сплавах [466, 984], селене [1304], хроме [467, 1447], кобальте [1380], титане [1114], металлическом уране и его соединениях [1204], окиси алюминия [324], в топливе и золе [1156[, нефти [2265], лаках [548], органических [967, 1087, 1305] и биологических [1185, 2248, 1297] материалах, для определения сероводорода и сульфидов в природных водах [839, 1177], почвах [937], атмосферном воздухе [631, 1459]. [c.120]


    Элементная и природная сера содержит органические соединения (битумы), продукты окисления серы, селен, теллур, мышьяк и другие примеси содержание их достигает 0,1—0,5%. Данные химического, спектрального и газового анализов показали наличие в сере 24 элементов. Современное состояние методов определения примесей в элементной сере дано в работе [7]. [c.216]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Метод дегидрирования особенно удобен при определении строения природных, сильно гидрированных циклических углеводородов путем превращения их в ароматические углеводороды (которые гораздо легче идентифицировать), но в ряде случаев он может быть и препаративным (детальный обзор [1], более краткий [2]). Наиболее часто в качестве дегидрирующих агентов применяются сера, селен, или такие металлы, как платина или палладий, а также и другие металлы, такие, как никель или родий, и такие соединения, как хлоранил при действии света или без него [3, 4], 2,3-дихлор-5,6-дициан-1,4-бензохинон [51 и тритилперхлорат [6]. Последний, по-видимому, наиболее эффективен для превращения перинафтанонов в перинафтеноны и хроманонов в хромоны [71. В случае серы работают при сравнительно низких температурах (230—250 °С) селен требует более высокой температуры (300—330 °С). При использовании каталитических методов (Р1 или Рб) соединение в паровой фазе можно пропускать над катализатором, нагретым при 300— 350 °С, однако удобнее работать в жидкой фазе. Как правило, хорощие результаты при дегидрировании дает нагревание с одной десятой частью 10%-ного палладированного угля при 310—320 °С. Иногда при дегидрогенизации серой или селеном в качестве растворителей используют нафталин или хиполип. Пропускание через реакционную смесь углекислого газа, а также энергичное кипячение облегчают удаление водорода можно также использовать акцепторы водорода, например бензол [81 или олеиновую кислоту [9]. [c.62]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Метод Вашака и Шедивеца с применением пиридинового раствора диэтилдитиокарбамината серебра используется для определения мышьяка в чугуне, железе и сталях [1173], пиритах и огарках [1037, 1038], свинце высокой чистоты [850] и в металлическом свинце [799], нефтепродуктах [485, 862, 995], меди и ее солях [799, 912], пищевых продуктах [1118], природных водах и рассолах [673, 958, 1099, 1144], органических соединениях [787, 802], силикатных материалах [781], сере [509, 1096], поваренной соли [958], двуокиси германия [343, 670], олове, висмуте, селене и теллуре [799], серной [799], фосфорной [839] и азотной [621] кислотах, вольфрамовом ангидриде и вольфрамовой кислоте [536], плавиковой [621, 911] и соляной [621] кислотах, воздухе [1059], отопительном газе [1179], бромистоводородной кислоте и фторидах металлов [911], биологических материалах [824]. [c.72]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]


    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Элементы-неметаллы (фосфор, кремний, азот, хлор, бром, йод, фтор, сера, селен, теллур, бор) в небольших количествах часто приходится определять в разнообразных по составу природных и промышленных материалах. Между тем на русском языке отсутствуют руководства по фотометрическим методам определения этих элементов. В связи с этим было признано целесообразным издание перевода книги Колориметрическое определение неметаллов (под ред. Д. Болца), получившей широкое распространение за рубежом. Для советского читателя эта книга представляет интерес также в том отношении, что она в какой-то степени характеризует уровень фотометрических методов определения неметаллов в американских химико-аналитических лабораториях. [c.5]

    Теллур сопутствует селену, но в природной сере он обнаруживается в количествах значительно меньших, чем селен. Для определения содержания примеси теллура в оч ищенной сере с успехом может быть применен метод, основанный на реакции теллура с диэтилдитиокарбаминатом натрия с образованием окрашенного комплекса, растворимого в органических растворителях. Максимум светопоглощеиия находится при 420 ммк [38], позднее были предложены другие производные диэтилдитиокарбаминовой кислоты, например 3,5-дифенилпиразолиндитиокар-баминат натрия [39]. Применение этого реактива позволяет повысить чувствительность колориметрического определения теллура до 5-10 %-Японские исследователи предложили 2-оксиэтилдитиокарбаминат цинка [40] и дисульфид-бис-дитиокарбаминат натрия [41]. [c.424]

    Иошино [223 ] применил такой же ионообменный метод для удаления мешающих катионов (цинка и н едеза) перед колориметрическим определением селена. Он установил, что в интервале pH 0,7—5,0 селенит-ионы полностью проходят в вытекающий раствор. Недавно этот метод был использован для спектрофотометрического определения селена в природных водах с помощью диаминобеизидипа [1331. [c.259]

    Полярографический метод применяют для определения хлорид-ионов в самых разнообразных объектах в титане [350], тантале 1801], селене [64], уране [688] и его солях [426], сульфате цинка и цинковом электролите [207], монокристаллах ( d r2Se4) [91], люминофорах на основе сульфидов кадмия и цинка [223, 224], кислотах (серной [970, 1068], фосфорной [46, 970], хлорной [970]), в смесях с другими галогенидами [294, 523], полимерах [860], природных водах и солях [90], сточных водах [230, 782], водно-метаноль-ных смесях [737], биологических объектах [436]. [c.109]

    Следующая по численности-группа - халькофильные элементы ( меднолюбивые в переводе с греческого). Их девятнадцать, и свое название они получили в связи с определенными свойствами меди, на которую они похожи в своем геохимическом поведении. Эти элементы отчетливо проявляют склонность образовывать природные соединения с серой (сульфиды) и ее аналогами по группе периодической таблицы Д.И. Менделеева - селеном и теллуром. На внешней оболочке ионов халькофильных элементов содержится по 8 (3, Зе, Те) или по 18 (у остальных) электронов. К халькофилам принадлежат такие элементы, как медь, серебро, золото, цинк, ртуть, германий, свинец, сера некоторые из них встречаются в природе в свободном виде. В природе встречаются в виде сульфидов, селенитов, теллуридов, а также в самородном состоянии (Си, Ад, Нд, РЬ, Zn, Аз, ЗЬ, В1, 3, Те, Зп). К халькофильным элементам относятся также Са, Се, Сс1, 1п, Т1, Ро. [c.9]


Смотреть страницы где упоминается термин Селен определение в природных: [c.173]    [c.14]    [c.45]    [c.55]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Определение селена в природных водах йодидом кадмия

Определение селена селенитов



© 2025 chem21.info Реклама на сайте