Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение группы меди и мышьяка

    Разделение групп меди и мышьяка [c.93]

    Мышьяк(1П) и мышьяк(У) осаждением сероводородом из кислых растворов могут быть отделены от элементов, пе входящих в сероводородную группу. Для отделения элементов группы меди от мышьяка сначала проводят совместное осаждение их сероводородом из кислого раствора, затем обрабатывают смесь сульфидов раствором сульфида щелочного металла для переведения мышьяка в соответствующую растворимую тиосоль. Можно также проводить разделение осаждением сульфидов в ще.точном растворе, сразу получая тиосоль мышьяка в растворе. [c.116]


    Осаждение сернистых соединеннй в 2N и 4 ТУ солянокислой среде сероводородом. Носителями, добавляемыми для разделения, являются медь и мышьяк. Радиоизотопы элементов этой группы соосаждаются. [c.212]

    Разделение группы мышьяка и меди. Осадок I или осадок и осадок 2 вместе обрабатывают 15 X реактива, содержащего сернистый натрий и едкий натр. Смесь нагревают на паровой бане в течение 3 мин., перемешивая, чтобы разбить на мелкие кусочки нерастворяющийся остаток. Затем добавляют 15 X 0,6 М раствора едкого натра и после перемешивания отделяют вытяжку 1 от остатка ]. Остаток нагревают в течение 2 мин. с 5Х раствора сернистого натрия — едкого натра. Смесь разбавляют 0,01 мл воды и перемешивают. После центрифугирования раствор, полученный при обработке остатка ь переносят в вытяжку ь Обработку 5Х реактива и 0,01 мл воды повторяют еще раз. [c.122]

    Сероводородом можно отделить германий от щелочных и щелочноземельных металлов и металлов группы сернистого аммония. Растворимость дисульфида германия в сульфиде аммония позволяет отделить германий от металлов подгруппы меди сероводородной группы. Разделение германия и мышьяка сероводородом может быть осуществлено в сернокислом растворе, содержащем сульфат аммония [225], или в растворе, содержащем плавиковую [226] либо щавелевую кислоты [167]. [c.412]

    В кислом растворе (2 н. кислота) тиоацетамид осаждает катионы IV и V аналитических групп мышьяка (III), сурьмы (III), олова (П), ртути (II), меди (П), свинца (II), серебра (I) в щелочной среде осаждаются катионы III группы алюминий (III), железо (111), хром (III), кобальт (П), никель (II), марганец (II) и цинк (11). Применяют его также для разделения катионов. [c.207]

    Осаждения добавлением сульфид-ионов имеют очень важное значение в количественном анализе не только для выделения отдельных элементов, но и для отделения групп элементов друг от друга. Осаждения могут быть проведены при самых различных условиях как в отношении концентрации ионов водорода, так и в отношении других особенностей раствора, в зависимости от преследуемых целей. Например, изменяя концентрацию ионов водорода, можно мышьяк (V) отделить от свинца, свинец от цинка, цинк от никеля, никель от марганца й марганец от магния. В щелочных растворах некоторые сульфиды образуют растворимые соединения, что может быть использовано для разделения элементов внутри группы, например для отделения свинца от молибдена. Разделения внутри группы возможны также путем превращения одного или нескольких ее членов в комплексные анионы, которые не реагируют с сульфид-ионами, например отделение кадмия от меди в растворе цианида, меди или сурьмы (III) от олова (IV) в растворе фтористоводородной кислоты, и сурьмы от олова в растворе, содержащем щавелевую кислоту и оксалат. [c.83]


    Осаждение сульфид-ионами можно также вести в растворах, содержащих комплексные ионы. Так производят отделение катионов, образующих сульфосоли, от катионов, не образующих сульфосолей, например разделение катионов группы мышьяка и меди. [c.371]

    Для расширения области применения методики разделения катионов V аналитической группы был проведен анализ бронзы (с. о. 189), содержавшей, кроме сурьмы (0,25%), олова (6,06%) и мышьяка (0,05%), медь (84,00%), цинк (5,23%), свинец (4,04%), железо (0,21%) и никель (0,12%). [c.43]

    Разделение посредстаом образования сульфо-анионов. Элементы группы мышьяка, в противоположность большинству элементов группы меди, образуют сульфо-анионы и растворяются поэтому в растворах сульфидов ж полисульфидов щелочных металлов. Из группы меди только ртуть, медь и висмут ведут себя отчасти аналогично элементам группы мь1шьяка. Сульфид ртути практически нерастворим в растворах сульфида аммония, мало растворим в растворах полисульфида аммония и растворим в смеси растворов сульфида натрия и едкого натра или едкого кали. Сульфид меди нерастворим в растворах сульфидов щелочных металлов, свободных от полисульфидов, но несколько растворим в присутствии последних. Сульфид висмута нерастворим в растворах сульфида и полисульфида аммония и в растворах бисульфидов калия и натрия (NaHS и КН8), но заметно растворим в растворах КзЗ и КазЗ, в смесях их с едкими щелочами и в растворах полисульфидов натрия и калия. [c.88]

    Различия в поведении сульфидов этих элементов позволяют проводить их разделения. Выбор между ИзЗ и КаЗж зависит главным образом рт валентности присутствующих в растворе элементов в количественном анализе предпочитают обычно работать с КгЗ и элементами группы мышьяка в их высшей валентности. Лучше проводить разделение, осаждая элементы группы меди в щелочном растворе, чем осаждать всю группу в кислом растворе и после обрабатывать смесь сульфидов раствором сульфида щелочного металла. В зависимости от обстоятельств, обра- [c.88]

    Выбор сульфида щелочного металла зависит от того, какое надо провести разделение. Например, нужно взять сульфид аммония или бисульфид щелочного металла (NaHS или KHS), если висмут должен остаться вместе с группой меди сульфид натрия или сульфид калия вместе с соответствующей едкой щелочью, когда нужно, чтобы ртуть осталась с группой мышьяка. Сульфид натрия следует также предпочесть, когда в осадке должен остаться сульфид меди, тогда как сульфид калия более желателен для отделения сурьмы. (Описание метода см. Осаждение посредством образования сульфо-анионЬв , стр. 88.) [c.93]

    Различия в поведении сульфидов этих элементов позволяют проводить их разделения. Выбор между и зависит главным образом от валентности присутствуюш,их в растворе элементов в количественном анализе предпочитают обычно работать с и элементами группы мышьяка в их высшей валентности. Лучше проводить разделение, осаждая элементы группы меди Б щелочном растворе, чем осаждать всю группу в кислом растворе и после обрабатывать смесь сульфидов раствором суль( л1да и елочиого металла. В зависимости от обстоятельств, обрабатывают щелочной раствор сероводородом или сульфидом щелочного металла или же вливают слабокислый анализируемый раствор в раствор сульфида п е-лочного металла, взяв последний в избытке все эти способы находят применение. [c.82]

    Разделение сероводородом и сульфидом аммония. Отделение катионов IV и V групп от кобальта сероводородом 83]. В сильнокислых растворах (pH 1) сероводород осаждает катионы IV и V групп в виде. малораствори.мых сульфидов. Таким путе.м отделяют. медь, серебро, ртуть, свинец, висмут, кад-.мий, рутений, родий, палладий, осмий,. мышьяк, золото, платину, олово, сурьму, иридий, гер.маний, селен, теллур, молибден, таллий, индий, галлий, ванадий и вольфрам от кобальта и других катионов III группы. Однако в присутствии четырехвалентного олова часть кобальта увлекается осадком сульфида олова. Соосаждение предотвращается при пропускании сероводорода в нагретый до 60 " С раствор в I соляной кислоте и акролеин в концентрации 0,5 мл на 100 мл раствора 715]. [c.62]

    Катион [Hg2P образующий малорастворимый хлорид Hg2 l2, относится к V группе. Катион Hg2+ занимает промежуточное положение между подгруппой меди и подгруппой мышьяка в IV группе. Он может быть отнесен либо к той, либо к другой подгруппе в зависимости от способа разделения этих подгрупп. [c.394]

    Сульфиды катионов IV группы, получаемые в результате осаждения сероводородом, принято разделять иа две подгруппы. Ниже приводятся два варианта такого разделения 1) действием раствора едкой щелочи и 2) действием раствора полисульфида натрия. В первом варианте остаются в осадке сульфиды свинца, висмута, меди, кадмия и ртути, составляющие подгруппу IVA, и переходят в раствор в форме тио-тиоокиси- и окси-соединений мышьяк, сурьма и четырехвалентное олово, объединяемые в подгруппу IV Б. Сульфид двухвалентного олова SnS не растворяется в едкой щелочи и оказывается в подгруппе IV А. Чтобы получить все олово в одной подгруппе, сначала окисляют Sn++ в Sn+ перекисью водорода, а затем уже пропускают сероводород все олово осаждается в виде SnS2 и под действием едкой щелочи целиком переходит в раствор подгруппы IV Б, Во втором варианте полисульфид натрия растворяет, наряду с сульфидами мышьяка, сурьмы и четырехва- [c.82]


    Другие методы разделения II группы на две подгруппы состоят в применении (1) многосернистого аммония (NH4)gS и (2) едкого натра. Первый реактив получается путем растворения серы в (NH4)2S, его состав точно неизвестен, но несомненно содержание некоторого количества ионов дисульфида S . Этот ион-окислитель и переводит мышьяк, сурьму и олово, в высшую валентность в этом виде они извлекаются имеющимися в наличии сульфидными ионами. Этим исключается потребность в окислении HNOg. Олово должно быть окислено до Sn+ + ++, в противном случае его сульфид не переводится в растворимое состояние сульфид-ионом. Многосернистый аммоний не растворяет HgS, хотя и растворяет до некоторой степени сульфид меди, что нежелательно. [c.71]

    Через шесть лет Е. Ленссен сгруппировал в триады уже не часть химических элементов, а все известные к тому времени химические элементы, которых тогда насчитывалось около 60. Ознакомившись с таблицей Е. Ленссена, Менделеев заметил, что в этой системе замечаются естественные группы, часто совпадающие с его, менделеевскими, общими понятиями (напр., группы калия, натрия и лития бария, стронция и кальция магния, цинка и кадмия серебра, свинца и ртути серы, селена и теллура фосфора, мышьяка и сурьмы осмия, платины и иридия палладия, рутения и родия вольфрама, ванадия и молибдена тантала, олова и титана и др.). Но тут же Менделеев замечает, что 1) кремний, бор и фтор, 2) кислород, азот и углерод, 3) хром, никкель и медь, 4) бериллий, цирконий и уран едва ли могут быть поставлены в одни группы, как это делает Ленссен. Система Ленссена, по мнению Менделеева, не решила проблемы, так как страдала шаткостью и не имела прочного начала. Ленссен старается,— пишет он,— опереться в триадном разделении элементов на их отношения по величине паев (в каждой триаде пай среднего элемента равен полусумме паев крайних элементов, как у Кремерса и др.), также [c.271]

    Приемник, где пятна окрашивались в следующие цвета (порядок перечисления соответствует возрастанию Си + темно-коричневый, РЬ + коричневый, желтый, ВР+ коричнево-черный и Нд2+ коричнево-черный. Разделение ионов тяжелых металлов (таллия, меди, свинца, мышьяка, кадмия, сурьмы, висмута и ртути), производимое при судебных экспертизах, исследовалось Кюнци и сотр. [12, 13]. На том же адсорбенте, что и в работе [2], с применением различных комплексообразующих реагентов и органических растворителей, обнаружено, что наилучшим растворителем является смесь 100 мл бензольно-ацетонового раствора (3 1), насыщенного винной кислотой и 6 мл 10 %-ной азотной кислоты. Однако в этом растворителе пятно ртути может налагаться на пятно висмута и пятно свинца налагается на пятно меди, а кадмий дает три пятна. С помощью смеси метанол—ацетонитрил—азотная кислота (пропорции не указаны) можно селективно отделить таллий (i 0,72) от остальных ионов, которые перемещались с фронтом или вблизи фронта растворителя. Отмечается [2, 12, 13], что не следует обращать внимание на абсолютные значения Rj, так как они зависят от состава разделяемой смеси. Для оценки результатов важны только относительная последовательность пятен ионов и их цвет после опрыскивания различными обнаруживающими реагентами. С растворителем Кюнци пятна разделяемых ионов располагаются в следующей последовательности Hg>Bi> Sb> d>As>Pb> u>Tl. Некоторые цветные реакции для различных ионов этой группы указаны в табл. 33.1. Сотрудники Кюнци применили разработанный метод для решения практических задач по количественному определению содержания некоторых металлов, например мышьяка в муке, таллия в крови, ртути в моче и мышьяка и кадмия в чае. Для количественной оценки размеры полученных пятен сопоставляли с размерами пятен при работе со стандартными растворами. Стандартное отклонение при определении содержания мышьяка и кадмия в чае составляло 10%, а при определении ртути в моче —0,5 мг-7о причем для проведения анализа требовалось всего 3 ч, в то время как анализ электролитическим методом занимал 12 ч, а стандартное отклонение для последнего метода составляло 0,4—0,5мг-%. [c.481]

    Из разделений внутри группы наиболее удовлетворительно протекает выделение мышьяка (V) осаждением сероводородом из холодного раствора, концентрированного по содержанию НС1 (стр. 278) . Менее удовлетворительно происходит отделение меди от кадмия (стр. 88), при котором, однако, оба элемента осаждают вместе и сул.ьфиды затем кипятят с разбавленной (1 5) серной кислотой. Разделения внутри группы при помощи фтористоводородной кислоты (стр. 83), основанные на образовании комплексных анионов, не следует смешивать с разделениями путем изменения pH раствора. [c.79]


Смотреть страницы где упоминается термин Разделение группы меди и мышьяка: [c.201]    [c.160]    [c.82]    [c.572]    [c.105]    [c.90]    [c.316]   
Практическое руководство по неорганическому анализу (1966) -- [ c.87 , c.93 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.82 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение на группы



© 2025 chem21.info Реклама на сайте