Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осаждение группы меди и мышьяка

    Очень важно, что величины произведений растворимости разных сульфидов различаются чрезвычайно сильно. Это позволяет,, надлежащим образом регулируя величину pH раствора, разделять катионы разных металлов путем осаждения их в виде сульфидов. Так, из качественного анализа известно, что сульфиды IV и V аналитических групп осаждаются сероводородом в кислой среде, так как величины их произведений растворимости очень малы (порядка 10 29 J, менее). Наоборот, осаждение катионов П1 аналитической группы (произведение растворимости порядка 10 —10" ) сероводородом или сульфидом аммония проводят в щелочной среде (при pH около 9). Аналогичные методы нередко применяются и в количественном анализе, например для отделения катионов меди, висмута, олова и других металлов от катионов железа и т. д. Регулируя кислотность раствора при осаждении сульфидов, можно количественно разделять катионы, принадлежащие к одной и той же аналитической группе. Так, в присутствии уксусной кислоты цинк можно количественно отделить от железа, в присутствии 10 н. раствора НС1 — отделить мышьяк от олова и сурьмы и т. д. [c.121]


    Как мышьяк (III), так и мышьяк (V) можно отделить от элементов, не входящих в сероводородную группу, осаждением сероводородом в кислом растворе (стр. 83) от элементов группы меди — осаждением в виде сульфида в щелочном растворе (стр. 87) или, менее удовлетворительно, — обработкой смеси сульфидов раствором сульфида щелочного металла (стр. 87). [c.305]

    При осаждении меди в виде роданида меди после восстановления сернистой кислотой в разбавленном сернокислом или солянокислом растворе получается удовлетворительное отделение меди от висмута и кадмия (из группы меди), и от сурьмы, олова и мышьяка (из группы мышьяка). Если присутствуют элементы, соли которых легко гидролизуются, например висмут, сурьма и олово, полезно прибавить винную кислоту. Метод этот часто применяется, когда нужно определить одну медь. Если другие элементы также должны быть определены, то лучше последовательно отделять все мешаюш ие элементы, как описано выше (см. Отделение ртути, серебра, висмута ). [c.95]

    Определение в виде сульфида ртути (II). Весовое определение ртути в виде сульфида ртути (И) является точным методом, но метод этот менее пригоден, чем предыдущий, так кай ртуть должна быть предварительно отделена от всех остальных элементов группы сероводорода, и если применяется метод Фольгарда, то й от элементов, осаждающихся сульфидом аммония. К этому надо добавить, что осадок сульфида ртути (II) увлекает с собой серу, которая должна быть удалена перед взвешиванием. Осаждение сульфида ртути (II) обработкой сульфосоли нитратом аммония протекает быстрее, чем прямое осаждение сероводородом в кислом растворе, и имеет те преимущества, что может проводиться в присутствии окислителей, например азотной кислоты, и дает возможность отделить от ртути серебро, свинец, висмут, мышьяк и сурьму. Метод этот не удается при анализе растворов, содержащих цинк, кадмий или медь, как указано выше (стр. 246). [c.249]

    Мышьяк(1П) и мышьяк(У) осаждением сероводородом из кислых растворов могут быть отделены от элементов, пе входящих в сероводородную группу. Для отделения элементов группы меди от мышьяка сначала проводят совместное осаждение их сероводородом из кислого раствора, затем обрабатывают смесь сульфидов раствором сульфида щелочного металла для переведения мышьяка в соответствующую растворимую тиосоль. Можно также проводить разделение осаждением сульфидов в ще.точном растворе, сразу получая тиосоль мышьяка в растворе. [c.116]


    Сульфиды щелочных металлов осаждают из раствора многие элементы. В обычном случае осаждение сульфид-ионами в щелочных растворах следует после предварительного отделения сероводородом в сильнокислых растворах, т. е. после удаления элементов, осаждающихся в сильнокислых растворах. Осложнений, вызываемых такими элементами, как алюминий, титан, хром, уран и редкоземельные металлы, л гко можно избежать добавлением тартратов, но тогда можно осаждать только марганец (в присутствии тартратов он осаждается не полностью), железо и элементы, осаждающиеся в слабокислых или почти нейтральных растворах. Иногда элементы данной группы осаждают вместе с группой меди, отделяя их все таким способом от группы мышьяка, как это описано ниже (см. Осаждение сульфидом аммония , стр. 90). [c.87]

    Осаждение групп меди и мышьяка может быть осуществлено количественно и представляет собой превосходный способ отделения этих элементов от многих других. Нужно отметить, что элементы других групп могут также осаждаться сероводородом в сильнокислом растворе вследствие образования смешанных сульфидов. [c.84]

    Электроосаждение сплавов железо—никель и медь—никель, а так ке анализ литературных данных по осаждению сплавов металлов группы железа с цинком, кадмием и марганцем, никель—кобальта, железо—кобальта, меди—мышьяка, меди— цинка, и др. показали, что разряд ионов металла, выделяющегося на катоде с меньшей поляризацией, замедляет скорость осаждения металла, разряжающегося с большой поляризацией. [c.43]

    Палладий и золото частично осаждаются диметилглиоксимом из слабоаммиачных раствороЕ . Из слабокислых растворов палладий осаждается количественно, золото — частично. Как общее положение, можно принять, что перед осаждением никеля диметилглиоксимом лучше удалить из раствора элементы группы сероводорода, несмотря на то, что умеренные количества меди, мышьяка, молибдена и, вероятно, некоторых других членов этой группы не мешают осаждению. Надо помнить, что присутствующее в растворе железо перейдет после обработки сероводородом в двухвалентное состояние и его следует затем окислить, так как железо (II) в аммиачных растворах реагирует с диметилглиоксимом с образованием имеющего красный цвет соединения, что приводит к повышенным результатам, если железо присутствует в больших количествах. Кремний и вольфрам в количествах, не превышающих нескольких миллиграммов, осаждению не мешают. Если эти элементы находятся в больших количествах, то они должны быть удалены обычными способами. [c.460]

    При осаждении сульфидов меди, ртути и мышьяка сульфид цинка часто увлекается в осадок тем в большей степени, чем дольше осадок находится вместе с раствором. Если осадок отделить немедленно, то цинк остается вместе с катионами III аналитической группы. [c.263]

    Подготовка раствора для осаждения подгруппы меди и 5-й группы. Как уже говорилось выше, осаждение сульфидов 4-й и 5-й групп сероводородом необходимо вести из раствора, pH которого равно приблизительно 0,5. Для этого поступают следующим образом. Раствор, полученный по п. 10, подщелачивают несколькими каплями концентрированного раствора аммиака до слабощелочной реакции среды (проверка по лакмусу), а затем подкисляют соляной кислотой до слабокислой реакции (проверка по лакмусу). После этого прибавляют еще 2 н. соляной кислоты в количестве, равном Уб объема полученного раствора pH такого раствора равно приблизительно 0,5. Это можно показать расчетом. Для ускорения осаждения сульфида мышьяка к раствору прибавляют [c.191]

    Под осаждением сероводородом в сильнокислом растворе понимается осаждение, проводимое при любом значении pH, соответствующем концентрациям от 0,25 до 13 н. соляной кислоты. Осаждение при более низких концентрациях кислоты представляет обычный случай и является общепринятым способом осаждения элементов так называемых групп меди и мышьяка. К группе меди относятся медь, серебро, ртуть, свинец, висмут, кадмий, рутений, родий, палладий и осмий, В группу мышьяка входят мышьяк, золото, платина, олово, сурьма, иридий, германий, селен, теллур и молибден. Таллий, индий и галлий также осаждаются полностью или частично в присутствии некоторых членов сероводородной группы точно так же ведут себя ванадий и вольфрам в отсутствие винной кислоты, Последние два элемента образуют сульфосоли и присоединяются к группе мышьяка, а первые три не дают сульфосолей и осаждаются с группой меди. [c.78]

    Осаждения добавлением сульфид-ионов имеют очень важное значение в количественном анализе не только для выделения отдельных элементов, но и для отделения групп элементов друг от друга. Осаждения могут быть проведены при самых различных условиях как в отношении концентрации ионов водорода, так и в отношении других особенностей раствора, в зависимости от преследуемых целей. Например, изменяя концентрацию ионов водорода, можно мышьяк (V) отделить от свинца, свинец от цинка, цинк от никеля, никель от марганца й марганец от магния. В щелочных растворах некоторые сульфиды образуют растворимые соединения, что может быть использовано для разделения элементов внутри группы, например для отделения свинца от молибдена. Разделения внутри группы возможны также путем превращения одного или нескольких ее членов в комплексные анионы, которые не реагируют с сульфид-ионами, например отделение кадмия от меди в растворе цианида, меди или сурьмы (III) от олова (IV) в растворе фтористоводородной кислоты, и сурьмы от олова в растворе, содержащем щавелевую кислоту и оксалат. [c.83]


    Из известных методов отделения сурьмы важнейшие основаны на свойствах ее сульфида. Так, сурьма отделяется от элементов, не входящих в группу сероводорода, осаждением сероводородом в кислом растворе (стр. 78) и от элементов группы меди—растворением сульфида сурьмы в щелочном растворе (стр. 82). Далее, сурьму можно отделить от мышьяка— осаждением очень мало растворимого сульфида последнего в сильно солянокислом растворе (стр. 278) от олова и германия—осаждением сероводородом в растворе, содержащем фтористоводородную кислоту (стр. 83), и от олова—осаждением сероводородом в щавелевокислом или виннокислом растворе (стр. 83). Из всех этих методов отделения наиболее важным является отделение мышьяка в сильно солянокислом растворе, так как мышьяк во всех методах мешает определению сурьмы. Мышьяк можно отделить как в виде сульфида мышьяка (П1), так и в виде сульфида мышьяка (V) (стр. 282), и отделение может быть проведено прямо в кислом растворе анализируемого вещества или после совместного осаждения сурьмы и мышьяка в виде сульфидов и растворения их в кислоте. [c.292]

    Важнейшие методы отделения олова основаны на свойствах его сульфидов. Так, например, олово может быть отделено от элементов, не входящих в группу сероводорода, осаждением сероводородом в умеренно кислом растворе (стр. 79) от сульфидов элементов группы меди—осаждением последних в растворах сульфидов щелочных металлов (стр. 81) от мышьяка—осаждением этого элемента сероводородом в сильно солянокислом растворе (стр. 78) и от мышьяка (III) и сурьмы (III)—осаждением последних сероводородом в растворе, содержащем олово в четырехвалентном состоянии и либо щавелевую, либо фтористоводородную кислоту (стр. 82—83). [c.305]

    Приступая к анализу, следует иметь в виду, что присутствие в растворе некоторых анионов мешает нормальному проведению хода анализа по описанной ниже схеме. Так, например, сильные окислители препятствуют осаждению элементов II группы сероводородом, окисляя его. Соли слабых кислот мешают регулировать кислотность раствора (перед осаждением сероводородом). Большая концентрация циан-ионов препятствует выделению меди в виде сульфида вследствие образования комплексного соединения. По той же причине ие могут быть осаждены сульфиды олова (II), мышьяка (V) и сурьмы (V) при наличии в растворе фторидов. Фосфаты вызывают преждевременное осаждение щелочноземельных элементов, которые благодаря этому могут выпасть в осадок вместе с III группой. [c.68]

    От элементов группы мышьяка медь может быть отделена осаждением едким натром и сульфидом натрия (стр. 87). [c.282]

    Для отделения германия от других элементов используются также методы, основанные на применении сероводорода и сульфидов щелочных металлов. Так как германий относится к подгруппе мышьяка сероводородной группы металлов, он может быть осажден сероводородом из кислых растворов, а затем отделен от элементов подгруппы меди обработкой сульфидного осадка сульфидами или полисульфидами щелочных металлов. Кроме того, в кислых растворах, содержащих фтористоводородную кислоту, германий ведет себя подобно олову, благодаря чему его можно отделять от мышьяка (III) и сурьмы (III), которые в этих условиях осаждаются сероводородом (стр. 88). Количественное осаждение германия в виде сульфида происходит значительно труднее, чем осаждение большинства других элементов сероводородной группы. Выделять его лучше всего, насыщая сероводородом холодный раствор, 6 н. по концентрации серной кислоты. Образующемуся при этом почти коллоидному осадку дают отстаиваться в течение 48 ч, закрыв колбу пробкой. Осадок сульфида германия следует промывать 6 н. серной кислотой, насыщенной сероводородом. [c.347]

    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    Никель не осаждается электролизом из сильнокислых растворов. Осаждение в слабокислых растворах неполно, и для количественного анализа оно интересно лишь тем, что подчеркивает необходимость электролитического осаждения меди в сильнокислом растворе во избежание загрязнения осадка меди никелем и потери никеля. Из аммиачных растворов никель и кобальт осаждаются легко и количественно, если принять некоторые простые меры предосторожности. Электролиз рекомендуется проводить в сильноаммиачном растворе, содержащем сульфат никеля и в некотором избытке—сульфат аммония. Если присутствует кобальт, осажление облегчается прибавлением ацетата натрия или, лучше, сульфита натрия, хотя последний несколько загрязняет осадок серой. Электролиз можно проводить и в растворах, содержащих хлориды вместо сульфатов. Нитраты должны отсутствовать, хотя одному или двум экспериментаторам удалось получить осадки и в их присутствии. Соли калия не оказывают влияния, так же как и малые количества марганца и хрома в присутствии бисульфита натрия. Хотя малые количества осаждающихся гидроокисей таких элементов, как железо и др., не окклюдируются в значительной степени отложившимся на катоде никелем, лучше все же их предварительно удалять повторным осаждением аммиаком, если они присутствуют в малых количествах, и ацетатным методом, если количество их велико. Серебро, медь, мышьяк и цинк также осаждаются, следовательно сероводородную группу и цинк следует всегда предварительно удалять. Ванадий и вольфрам нежелательны ванадий, видимо, не мешает осаждению одного никеля или одного кобальта, но мешает их совместному осаждению вольфрам не мешает осаждению никеля, но препятствует осаждению кобальта или никеля и кобальта вместе. Соли железа (И), хроматы, тартраты и молибден очень мешают осаждению . Электролиз не должен быть слишком продолжительным вследствие некоторой тенденции анода растворяться с последующим осаждением платины на катоде. О полноте осаждения можно судить по пробе с тиокарбонатом калия. Осаждение никеля редко бывает полным, и при выполнении точных анализов требуется дополнительное выделение его из электролита. При однократном осаждении никеля из аммиачного раствора, содержащего сульфат аммония, получаемые осадки обычно весят на несколько десятых долей миллиграмма больше, чем это следовало бы, несмотря на неполноту осаждения никеля. [c.424]

    Осаждение сернистых соединеннй в 2N и 4 ТУ солянокислой среде сероводородом. Носителями, добавляемыми для разделения, являются медь и мышьяк. Радиоизотопы элементов этой группы соосаждаются. [c.212]

    Осаждение сульфид-ионами можно также вести в растворах, содержащих комплексные ионы. Так производят отделение катионов, образующих сульфосоли, от катионов, не образующих сульфосолей, например разделение катионов группы мышьяка и меди. [c.371]

    Сульфиды катионов IV группы, получаемые в результате осаждения сероводородом, принято разделять иа две подгруппы. Ниже приводятся два варианта такого разделения 1) действием раствора едкой щелочи и 2) действием раствора полисульфида натрия. В первом варианте остаются в осадке сульфиды свинца, висмута, меди, кадмия и ртути, составляющие подгруппу IVA, и переходят в раствор в форме тио-тиоокиси- и окси-соединений мышьяк, сурьма и четырехвалентное олово, объединяемые в подгруппу IV Б. Сульфид двухвалентного олова SnS не растворяется в едкой щелочи и оказывается в подгруппе IV А. Чтобы получить все олово в одной подгруппе, сначала окисляют Sn++ в Sn+ перекисью водорода, а затем уже пропускают сероводород все олово осаждается в виде SnS2 и под действием едкой щелочи целиком переходит в раствор подгруппы IV Б, Во втором варианте полисульфид натрия растворяет, наряду с сульфидами мышьяка, сурьмы и четырехва- [c.82]

    Выбор сульфида щелочного металла зависит от того, какое надо провести разделение. Например, нужно взять сульфид аммония или бисульфид щелочного металла (NaHS или KHS), если висмут должен остаться вместе с группой меди сульфид натрия или сульфид калия вместе с соответствующей едкой щелочью, когда нужно, чтобы ртуть осталась с группой мышьяка. Сульфид натрия следует также предпочесть, когда в осадке должен остаться сульфид меди, тогда как сульфид калия более желателен для отделения сурьмы. (Описание метода см. Осаждение посредством образования сульфо-анионЬв , стр. 88.) [c.93]

    Осаждению никеля диметилглиоксимом мешают лишь очень немногие элементы, из которых важнейший—палладий, осаждающийся и в слабокислых, и в слабоаммиачных растворах. Платина и золото загрязняют осадок диметилглиоксимина никеля, равно как и железо (И), если осаждение проводится в аммиачном растворе. Малке количества меди, мышьяка и молибдена, какие могут содержаться в обыкновенной углеродистой стали, не причиняют затруднений. Если медь присутствует в большем количестве, то она должна бьпь удалена, так же как и другие члены сероводородной группы.  [c.418]

    Сероводород осаждает германий в виде ОеЗа из сильнокислых ( 0,1 и.) растворов. Для количественного выделения германия рекомендуется осаждать на холоду из 5 н. сернокислого или 3 и. солянокислого раствора [16]. Полученный осаждением аморфный дисульфид — белый порошок, плохо смачивающийся водой. В присутствии мышьяка, меди и других элементов группы сероводорода германий может осаждаться с их сульфидами и при более низкой кислотности в результате адсорбции, например сульфидом Аз (V), или образования соединений (например, СиОеЗз). Сульфид натрия осаждает германий из кислых растворов (pH < 1) в виде дисульфида, который в присутствии избытка N338 переходит в тиосоединения. Осаждение в виде сульфида используется в технологии и аналитической химии германия. [c.161]

    Следующим по значению является метод отделения мышьяка осаждением его сероводородом в сильно солянокислом растворе. Обычно это отделение проводят после предварительного, выделения всей группы мышьяка. Отделение это хорошо проходит в присутствии олова и сурьмы — элементов, обычно сопровождающих мышьяк, но оно не удается в присутствии германия, молибдена-, ртути и меди, также образующих маЛО-растворимые сульфиды. Осаждение сульфида мышьяка (V) должно проводиться при пропускании быстрого тока сероводорода через охлаждаемый льдом, 10 н. по содержанию соляной кислоты, раствор (см. стр. 310). В менее кислых растворах осаждение идет медленно, в теплых растворах получается смесь AsgSs и AsaSg. Чаще применяется осаждение сульфида мышьяка (III), так как оно может проводиться прй кислотности ниже 9 н. и при обыкновенной температуре (стр. 310). [c.305]

    Известны соединения одновалентного и двухвалентного таллия. По химическим свойствам таллий (I) сходен со щелочными металлами, а таллий (1П) — с тяжелыми металлами. В кислых растворах таллий (III) легко восстанавливается сернистой кислотой или сероводородом до одновалентного состояния. Таллий (I) окисляется хлором, бромом и царской водкой, но не окисляется азотной кислотой. Из сильнокислых растворов таллий, если он один, не осаждается сероводородом, но выделяется совместно с другими металлами группы сероводорода, образуя соединения с такими элементами, как мышьяк, сурьма, олово и медь. Из растворов, содержащих разбавхЕенную минеральную кислоту, таллий сероводородом осаждается не полностью, по выделяется количественно в виде TI2S из уксуснокислых растворов или при осаждении сульфидом аммония. Так как TI2S на воздухе легко окисляется, фильтрование следует проводить возможно быстрее, следя за тем, чтобы фильтр все время оставался влажным. Промывание осадка заканчивают разбавленным раствором сульфида аммония (бесцветным). [c.538]

    При продолжительном отстаивании осадков сульфидов меди, ртути и мышьяка после их выделения сероводородом из раствора в присутствии некоторых катионов III аналитической группы наблюдается последующее осаждение сульфидов катионов III группы на поверхности скоагулированного осадка сульфидов катионов IV и V групп вследствие адсорбции на нем сероводорода. Для предупреждения этого необходимо немедленно отфильтровать осадок сульфидов IV и V групп, не давая ему долго отстаиваться. Если осадок постоял, то его можно растворить и вновь переосадить из полученного раствора. [c.273]

    Последующее осаждение наблюдается при продолжительн отстаивании сульфидов меди, ртути, мышьяка, выделенных д( ствием сероводорода в присутствии некотор.ых катионов треп группы. Скоагулированные осадки сульфидов имеют на своей i верхности слой адсорбированного сероводорода (стр. 127). Ес при этом присутствуют ионы Zn2+ (а также и 03 +), то, б годаря повышенной концентрации сероводорода, на поеерхнос сульфида ртути осаждается ZnS (ШгЗз и ОзгЗз), несмотря на что значение pH раствора слишком мало. [c.130]

    II группы нужно считать такие, при которых в начале осаждения имеется возможно большая концентрация кислоты, а после выделения мышьяка эта концентрация доводится разбавлением приблизительно до 0,5N крепости, и затем продолжается дальнейшее насыщение сероводородом. Нагревание до 60—70 благоприятствует осаждению, особенно сернистой меди . Никогда не следует забывахь после осаждения всей группы отфильтровывать немного жидкости в пробирку, разбавить отфильтрованную пробу приблизительно равньш объемом воды и посмотреть, ие появится ли муть непо-средстви1Н0 от разбавления или при пропускании нескольких пузырьков сероводорода. Непоявление мути служит признаком полного выделения ка- [c.295]

    Дисульфид ОеЗг получается, например, действием паров серы в токе Нг5 или СОг на германий или его двуокись. Это белое чешуйчатое вещество (или игольчатые ромбические кристаллы) с перламутровым блеском, плотность 2,94, жирное на ощупь 123. Сероводород осаждает германий в виде ОеЗг из сильнокислых (>0,1 н.) растворов. Для количественного выделения германия рекомендуется осаждать на холоду из 5 н. сернокислого или 3 н. солянокислого раствора [161. Полученный осаждением аморфный дисульфид — белый порошок, плохо смачивающийся водой. В присутствии мышьяка, меди и других элементов группы сероводорода германий может осаждаться с их сульфидами и при более низкой кислотности в результате адсорбции, например сульфидом Аз (V), или образования соединений (например, СиОеЗз). Сульфид натрия осаждает германий из кислых растворов (pH < 1) в виде дисульфида, который в присутствии избытка Ыаг8 переходит в тиосоединения. Осаждение в виде сульфида используется в технологии и аналитической химии германия. [c.161]

    Отделение мышьяка, сурьмы, олова и ртути от подгруппы меди основано на амфотерных свойствах этих элементов (см. стр. 30). Образующиеся соли аналогичны соответствующим кислородным солям, например, арсенат и тиоарсенат AsOf и AsSf . Обработка раствора, содержащего эти тиосоли, соляной кислотой вновь приводит к осаждению сульфидов, так как равновесие смещается с удалением сульфидного иона в виде HgS. Уравнения реакций растворения и повторного осаждения сульфидов П Б группы приводятся ниже  [c.70]


Смотреть страницы где упоминается термин Осаждение группы меди и мышьяка: [c.84]    [c.458]    [c.464]    [c.87]    [c.421]    [c.201]    [c.139]    [c.269]    [c.398]    [c.105]   
Практическое руководство по неорганическому анализу (1966) -- [ c.84 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

группы осаждение



© 2025 chem21.info Реклама на сайте