Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий элюирование из катионитов

    Колонку высотой и см, диаметром 0,5 см заполняют смолой КУ-2 в Н-фор-ме, промывают I N раствором НС1 и вносят в колонку анализируемый раствор в 1 НС1, содержащий хлориды титана и циркония. Затем колонку промывают 1 N раствором НС1 до полного извлечения титана, и цирконий элюируют 4 N раствором НС1. Удовлетворительное разделение титана и циркония наблюдается при отношении Ti Zr от ООО 1 до 1 10 ООО. Значительно хуже разделяются элементы на катионите СБС 4 N НС1 элюирует Zr лишь на 80—85%, а для элюирования Ti требуется примерно в 2,5 раза больший объем 1 N НС по сравнению с КУ-2. На катионите СБС может быть количественно отделен цирконий от железа и никеля, если предварительно цирконий перевести в комплексное соединение с карбонатом [5]. [c.100]


    В качестве сорбента для разделения смесей щелочных металлов применяют порощок целлюлозы [891], трепел, пропитан ный дилитуровой кислотой [1572], сульфат бария, смещанный с виолуровой кислотой [1170, 1171], вольфрамат цирконила [1022] Для разделения калия, натрия и лития рекомендуется пропустить раствор через колонку с сульфосмолой СДВ-3 с после дующим элюированием растворами соляной кислоты разных концентраций, при применении 0,12 N раствора кислоты в 80%-ном метаноле вымывается литий, 0,25 N соляная кислота вымывает натрий, для удаления из колонки калия промывают 0,6 N соляной кислотой [135] Аналогичный способ последовательного вымывания щелочных металлов из колонки растворами соляной кислоты разных концентраций см [1654, 2144] или 0,1 N раствором хлорной кислоты [1687] Можно также вымывать водным 0,7 N раствором соляной кислоты, при этом вначале отмываются литий и натрий, а затем калий [2675, 2678] Такая же последовательность вымывания катионов щелочных металлов наблюдается и при применении в качестве растворителя смеси фенола, метанола и конц НС1 [2798] Описан способ элюирования лития и натрия смесью 10%-ного метанола и 0,2 N соляной кислоты с последующим вымыванием калия 0,5 N соляной кислотой [2141] [c.143]

    При сорбции смеси металлов на катионите в аммонийной форме отмывка 6 М раствором H I приводит к появлению на выходе из колонки сначала гафния, а затем циркония. При элюировании 0,5 М H2SO4 в элюате первым появляется цирконий, В той же последовательности, но с более четким разделением вымываются с катионита цирконий и гафний раствором 0,09 М лимонной и 0,45 М азотной кислот, [c.179]

    Многие групповые разделения основаны на комплексообразова-нии. Первые примеры практического применепия предложены Самуэльсоном разделения выполнялись методом селективного поглощения (глава 10. 14). Рассел [23 ] показал, что цирконий и ниобий могут быть селективно элюированы щавелевой кислотой. Этот факт объяснялся тем, что щавелевая кислота образует с указанными металлами особо прочные комплексы. В работе Томпкинса с сотрудш -ками [26 ] комплексообразование в растворах щавелевой кислоты использовано для группового разделения радиоактивных изотопов. Нанример, если смесь циркония, ниобия, редкоземельных и щелочноземельных металлов поглотить катионитом в верхней части колонки, то цирконий и ниобий легко элюируются 0,5% раствором щавелевой кислоты без заметного вытеснения из колонки других иопов [4, 26]. Затем, трех-, двух- и однозарядные ионы могут быть разделены при помощи цитратных буферов. При pH 3 трехзарядные ионы вытесняются 5% цитратным раствором нри pH 5 из колонки удаляются двухзарядные и однозарядные катионы [26]. Выделенную группу ионов можно затем разделить повторным поглощением и хроматографическим элюированием цитратными буферами. Повторное поглощение легко осуществляется, если добавлением азотной кислоты понизить величину pH до 2,5. [c.293]


    Среди органических реагентов имеется широкий выбор комплексообразующих агентов, пригодных для онообменных способов разделения. Обычно в разных аналитических методах применяются маскирующие агенты. Например, окоалат может быть использован для селективного элюирования из катионита ТН, ЫЬ и Та, а тартрат —для элюирования ионов редкоземельных и щелочноземельных металлов вместе с железом и алюминием с др угой стороны, цирконий в этой среде может сорбироваться на анионо-обменнике. Сурьма и олово элюируются из катионита тартратом,. а щелочные и щелочноземельные металлы — а- ок сиизомасля ной. кислотой [52, 53], Ре, Т1 и Л1 — тироном [54]. Некоторые из этих реагентов позволяют добиться высокоселективного разделения. Например, титан можно в присутствии аскорбиновой кислоты сорбировать яа анионите и отделить от Ре, Сг и N1 [55]. Для селективного элюирования кобальта яз смеси Со, Мп и Ре, сорбированной на катионите, пригодна нитрозо-К-соль [56]. [c.257]

    Особый интерес представляют растворы соляной кислоты, применяемые при разделении смесей на анионитах. Поскольку благодаря именно соляной кислоте, образующей с ионами металлов анионохлоридные комплексы, эти ионы спсссбны задерживаться на анионитах, казалось бы, что в ее присутствии ионы металлов по той же причине не должны сорбироваться на катионитах. Однако влияние соляной кислоты на катионный обмен не столь уже велико. Сорбционная спсссбнссть смол наиболее сильно проявляется по отношению к ионам высокого заряда именно поэтому аниониты предпочтительно сорбируют полностью координированные хлоридные комплексы как наиболее сильно отрицательно заряженные, в то время как катиониты — незакомплексованные катионы, обладающие наибольшими положительными зарядами. Эта точка зрения обсуждается более полно в гл. 11. Тем не менее для элюирования металлов, образующих устойчивые хлоридные комплексы, таких, как ртуть(П), цинк(И), кадмий(П), железо(П1) [25], цирконий(1У) [26], бериллий [27 и палладий [28], соляная кислота является более сильным элюирующим реагентом, чем азотная и серная кислоты. В присутствии серной кислоты на анионите сорбируется уран(У1),с катионита уран снимают тоже серной кислотой аналогично ведет себя и азотная кислота по отношению к торию(1У) [29]. [c.200]

    В качестве другого примера можно указать на методику разделения ионов циркония (IV) и гафния (IV). Для разделения эти катионы сначала переводят в анионные сульфатные комплексы, которые поглощают анионитом. При последующем элюировании 1 М раствором H2SO4, содержащим сульфат натрия, происходит их полное разделение сначала вымывается гафний, а затем цирконий. [c.355]

    Стрит и Сиборг [295 ] впервые получили этим методом из 30% -ного концентрата гафния несколько миллиграмов двуокиси гафния с содержанием 0,1% ZrO при выходе 66%. Они применяли катионит дауэкс-50 в аммиачной форме и растворы хлорокисей циркония и гафния в 2-мол. хлорной кислоте. Элюирование проводилось [c.63]

    Метод отделения следовых количеств гафния от циркония, предложенный Хасино [120], основан на сорбции из растворов гафния и циркония катионитом амберлит Щ-120 и последующем их разделении при элюировании серной кислотой. В растворе после разделения гафний определяют спектрофотометрически с ализарином 5. Чувствительность метода — 10 мкг гафния в 1 г анализируемого вещества. Катионит амберлит Щ-120 применялся [121] для очистки изотопа от радиохимической примеси 8с. [c.381]

    Авторы [98 ] радиохимически чистый гафний добавляли к анализируемому раствору в виде азотнокислого раствора после чего гафний отделяли от циркония ионным обменом на катионите КУ-2х12 из азотнокислого раствора (2-н. HNO3). Довольно быстрое разделение элементов происходило при элюировании колонки 0,7-н. серной кислотой. Количество выделенного гафния определялось гравиметрически, осаждением в виде гидроокиси, или фотометрически с ализарином S. Эта методика позволяет определять гафний в присутствии циркония с относительной ошибкой примерно 10% при содержании гафния менее 1% и с ошибкой 3—5% при большем его содержании. Метод применялся для определения гафния в цирконии, смесях окислов и в эвдиалите. Результаты определений хорошо совпадают с данными рентгеноспектрального анализа. [c.442]

    Во многих случаях, однако, ионообменная смола действует только как субстрат, удерживающий ионы, в то время как разделение достигается благодаря различию в способностях ионов образовывать комплексы с веществами, содержащимися в элюирующих растворах. Например, смесь редкоземельных катионов может быть адсорбирована на катионообменной смоле и элюирована буферным раствором цитрата аммония и лимонкой кислоты при pH = 3- -3,5. При этом образуются нейтральные комплексы М (Н2сН)з, и элементы появляются в порядке уменьщения устойчивости этих комплексов, а именно — в порядке уменьщения атомного номера. Подобным же образом можно использовать другие комплексообразующие агенты, помимо, лимонной кислоты, например молочную кислоту и этилендиа-минтетрауксусную кислоту. В случае разделения циркония и гафния подходящим комплексообразующим растворителем для элюирования является, как показали Листер и Мак Дональд [79], разбавленная серная кислота. [c.152]


    Группа сероводорода. Забин и Роллинс [106] исследовали применение неорганических соединений в качестве ионообменников для разделения катионов. Для приготовления хроматографических пластинок они использовали ортофосфат циркония и водный оксид циркония в аммиачной среде с добавкой 3 % кукурузного крахмала как закрепляющего вещества. На аммиачной форме окиси циркония можно отделить Н ( /0,9) от d (/ / 0,3), группы ионов Си, Ад, Ре, РЬ ( / 0,0), каждого элемента этой группы, а также от N1 и Со (для которых Rf 0,5), применяя как элюирующий растворитель 2,0 М нитрат аммония при длине пути элюирования 10 см. На водородной форме фосфата циркония при использовании 0,1 М соляной кислоты как элюирующего растворителя получены следующие значения / / РЬ 0,0 Ад 0,0 Си 0,1, d 0,4 и Нд 0,85. В этой же хроматографической системе для железа получили / / от О до 0,1, а никель и кобальт давали [c.498]

    Редкоземельные элементы. Лантаноиды подвергали хроматографическому разделению на карбоксиметилцеллюлозе (в натриевой форме) и дауэксе 50-Х4 (Na+) при элюировании лактат-ными буферными растворами [115]. Шимизу и Муто [116] хроматографировали на DEAE-целлюлозе трехвалентные редкоземельные элементы, а также цирконий, гафний, торий и уран, элюируя смесью 0,1 М серная кислота—0,05 М сульфат аммония указанные катионы можно полностью разделить при двумерном элюировании, используя этот растворитель для элюирования в первом направлении и смесь 0,1 М серная кислота—1 М сульфат аммония для элюирования во втором направлении. Ишида [117] исследовал хроматографические характеристики редкоземельных элементов на DEAE-целлюлозе при элюировании смесями метанол—азотная кислота. Для разделений в ряду катионов лантан—неодим наиболее эффективными являются смеси метанол—8 н. азотная кислота (5 1) и метанол—1 н. азотная кислота (20 1). Катионы самария, европия и гадолиния разделялись при элюировании смесью метанол—14 н. азотная кислота (20 1 ). [c.500]


Смотреть страницы где упоминается термин Цирконий элюирование из катионитов: [c.226]    [c.119]    [c.253]    [c.327]    [c.108]   
Ионообменные разделения в аналитической химии (1966) -- [ c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Элюирование



© 2025 chem21.info Реклама на сайте