Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий ионный обмен

    Было установлено, что на первой стадии этого взаимодействия между твердой кислотой и раствором протекает ионный обмен. Что касается его второй стадии, то известно, что каким-то не вполне ясным путём она приводит к образованию сложной и довольно неопределенной смеси твердых веществ. Исследование взаимодействия других твердых кислот, например водной двуокиси циркония, водной двуокиси титана со щелочными растворами, привело к установлению аналогичного хода превращения. [c.219]


    Химические свойства ионов титана(IV), циркония(IV) и гафния (IV) напоминают свойства ионов урана, церия, олова, свинца, германия и кремния той же степени окисления свойства ионов титана(III) обнаруживают общность с ионами V(III), Fe(III) и Al (III). Имея почти одинаковые атомные и ионные радиусы вследствие лантаноидного сжатия (2г 0,145 нм Hf 0,144 нм 2г + 0,074 нм Hf+ 0,075 нм), цирконий и гафний очень похожи друг на друга по химическим свойствам. Цирконий и гафний образуют всегда общие минералы. Наиболее удобными технологическими методами разделения циркония и гафния являются ионный обмен или жидкостная экстракция. [c.609]

    Вещества особой чистоты получают или глубокой очисткой образцов, полученных обычными методами, или выделением особо чистого вещества из другого, более сложного, особой чистоты, или, наконец, путем синтеза сложного особо чистого вещества из простых особо чистых веществ. Во всех случаях необходима глубокая очистка веществ. Для этого используются химические и особенно физико-химические методы дистилляция и ректификация экстракция различными растворителями сорбционные методы (хроматография, ионный обмен на колонках и пр.) кристаллизационные методы (направленная кристаллизация, зонная плавка и др.) электролиз (см., например, рафинирование меди в гл. УИ1, 7) вакуумная дуговая и электронно-лучевая плавка, широко используемая в промышленности для получения чистых циркония, тантала, ниобия, вольфрама и других металлов другие методы. [c.258]

    ИОННЫЙ ОБМЕН НА ФОСФАТЕ ЦИРКОНИЯ [c.137]

    Из данных по изучению химических свойств фосфата циркония и его инфракрасных спектров следует, что в ионном обмене на фосфате циркония участвуют атомы водорода кислых фосфатных групп, выполняющие роль, аналогичную роли сульфогрупп в сильно- [c.137]

    Очистка циркония от гафния ионным обменом из смесей соляной и плавиковой кислот [986]. [c.245]

    Ионный обмен циркония и гафния из растворов в хлорной кислоте на амберлите IR-120 [991]. [c.245]

    Определение циркония в плутонии ионным обменом и спектрографией [1755]. [c.307]

    Разделение титана, циркония и тория ионным обменом [2579]. [c.344]

    Ионный обмен циркония и гафния в хлорнокислых растворах на амберлите IR-120 [2964]. [c.365]

    Очистка циркония от гафния ионным обменом в смесях HG1 — HF [2972]. [c.365]


    Химия гафния изучена в значительно меньшей степени, чем химия циркония, но во всех известных случаях разница между ними очень невелика. В основном это небольшие различия в растворимости и летучести соединений, а также в отношении к ионному обмену и экстракции растворителями [1]. [c.339]

    Недавние технические условия на цирконий реакторной чистоты допускали присутствие в нем не больше 10" % гафния. Средний эффективный поперечник захвата медленных нейтронов у такого циркония равен 1,18 бар-па — в шесть с половиной раз больше, чем у чистого. Разница весьма существенная, но чтобы достичь хотя бы этого -значения, применяют сложную многоступенчатую очистку ионный обмен, многократное осаждение, экстракционное разделение. [c.199]

    Ионный обмен. Разделение циркония и гафния ионообменным методом основано на различии в способности ионов этих элементов адсорбироваться на ионообменных смолах. В водных растворах цирконий и гафний присутствуют в виде катионов или входят в состав комплексных анионов. Вследствие этого для разделения можно [c.460]

    Авторы [98 ] радиохимически чистый гафний добавляли к анализируемому раствору в виде азотнокислого раствора после чего гафний отделяли от циркония ионным обменом на катионите КУ-2х12 из азотнокислого раствора (2-н. HNO3). Довольно быстрое разделение элементов происходило при элюировании колонки 0,7-н. серной кислотой. Количество выделенного гафния определялось гравиметрически, осаждением в виде гидроокиси, или фотометрически с ализарином S. Эта методика позволяет определять гафний в присутствии циркония с относительной ошибкой примерно 10% при содержании гафния менее 1% и с ошибкой 3—5% при большем его содержании. Метод применялся для определения гафния в цирконии, смесях окислов и в эвдиалите. Результаты определений хорошо совпадают с данными рентгеноспектрального анализа. [c.442]

    Разделение циркония и гафния труднее, чем любых соседних элементов, включая лантаноиды, так как их химические свойства ближе друг к другу, чем у всех остальных пар родственных элементов (рис. 3.99). Для отделения циркония от гафния применяют дробную кристаллизацию КгХгРе и К2Н Ре, ректификацию летучих соединений (ЭСЬ. и др.), ионный обмен, селективную экстракцию, последний метод наиболее широко применяют в промышленности. [c.503]

    Для отделения циркония от гяфния применяют дробную кристаллизацию комплексных фторцдов Кг17х ь] и К2[НГРб , ректификацию летучих соединений ЭСЦ и других ионный обмен, селективную экстракцию (последний метод наиболее щироко применяют я промышленности). [c.488]

    К синтетическим неорганическим сорбентам, обладающим способностью к ионному обмену, относятся силикагель, алюмосиликаты, труднорастворимые оксиды и гидроксиды ряда металлов (алюминия, хрома, олова, циркония, тория, титана и др.), полимерные соли циркония, титана и других элементов, соли гетерополикислот. Неорганические синтетические иониты отличаются большим разнообразием свойств, для них хара стерно селективное поглощение отдельных ионов из их смесей в растворах. В отличие от природных минеральных сорбентов, синтетические обладают в ряде случаев значительно большей на-бухаемостью в воде и водных растворах, что увеличивает степень участия ионогенных групп в сорбционном процессе. [c.41]

    Эта структура предполагает цепочечное строение связь между атомами циркония через оксомостики и фосфатные группы наличие кислых фосфатных групп. Она достаточно хорошо объясняет свойства фосфатов, способность их к ионному обмену. При ионном обмене на катионы металлов замещается водород фосфатных групп после их насыщения в обмене могут принимать участие и гидроксогруппы. Фосфаты обладают высокой обменной емкостью (до 6 мг-экв/г). В сильнощелочной среде фосфатные группы замещаются на гидроксогруппы, что приводит к изменению состава. Не исключено, что фосфаты имеют циклическое строение, а связь между атомами циркония осуществляется и через гидроксомостики. [c.289]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизобутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например, ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. [c.330]


    Неподвижная фаза. Способностью к ионному обмену обладают некоторые минеральные материалы. Среди них цеолиты (анальцит, фозажит, стильбит), глинистые материалы (каолинит, монтмориллонит, слюды, силикаты). Такой способностью обладают также синтетические неорганические иониты (иониты на основе циркония, оксида алюминия), а также специально приготовленные сульфированные угли. Нашедшие наибольшее практическое применение ионообменные смолы состоят как бы из двух частей матрицы (каркаса), не участвующей в ионном обмене, и ионогенных групп, структурно связанных с матрицей. Такой матрицей чаще всего является сополимер дивинилбензола и полистирола. Дивинилбензол как бы сшивает поперечными связями цепи полистирола, что приводит к образованию зерен полимера, пронизанных порами. [c.604]

    Ионный обмен. Обмен катионов между различными ионообмен-никами, включая цеолиты, и расплавами таких легкоплавких солей, как, например, нитраты, исследован довольно широко. Баррер [3] описал катионный обмен между NH4 I и безводными цеолитами. Длительное выдерживание безводных цеолитов в парах NH4 I при 300° С приводит к почти полному катионному обмену. Особым типом катионного обмена является обмен катионов металла на Н" в твердых телах. Троуп и Клирфильд [4] описали реакцию фосфата циркония с твердыми хлоридами. В процессе реакции поверхностные атомы водорода ионообменника и хлорид-ионы образуют НС1  [c.401]

    Для количественного разделения циркония и гафния достаточно удовлетворительных методов неизвестно, Для этой цели предложен метод ионного обмена. При соответствуЮш ем подборе катионитов и раствора для элюирования эти методы могут дать- хорошие результаты в аналитической практике, но они еще недостаточно детально разработаны, чтобы лх здесь можно было излагать. Комплексные оксалаты, а также фториды циркония и гафния были хроматографически разделены на анионите. сильноосновного типа Для очистки циркония и разделения циркония и гафния предложены также и некоторые другие способы, основанные на ионном обмене. Для разделения этих элементов рекомендуется, кроме того, использовать различное давление паров их тетрахлоридов,-а также их фосфоридхДоридов . [c.635]

    Получение. Соединения Г. выделяют из соединений Zr обычно после завершения технологич. цикла получения последнего. Вскрытие циркониевых рудных концентратов, содержащих Г., и получение соединений Zr являются предтехнологией гафния (см. Цирконий). Собственная технология Г. характеризуется в основном методами, применяемыми для разделения Zr и Hf, к-рые можно объединить в след, группы дробная кристаллизация дробное осаждение селективное термяч. разложение соединений сублимация, дистилляция и ректификация галогени-дов и их производных адсорбция я ионный обмен . экстракция. Все эти методы, базируются на использовании лишь небольших различий в. свойствах соединений Zr и Hf. [c.406]

    Отделение циркония от иттрия может быть выполнено ионно-обменным путем цирконий извлекают из катионита раствором щавелевой кислоты, не нзвлекающсй игтрия. Можно облученную окись иттрпя после растворения в соляной кислоте осадить в виде фторида. [c.271]

    В настоящее время описан ряд методов разделения циркония и гафния дробная кристаллизация [1], дробное осаждение [2], термическое разложение некоторых соединений, сублимация, ректификация [3, 4] и дистилляция галогенидов и их молекулярных соединений [5, 6], частичное восстановление хлоридов [7], адсорбция и ионный обмен [8—12], экстрагирование органическими растворителями и т. д. Основным требованием к методу разделения наряду с его высокой селективностью является простота получения химического соединения, применяемого в процессе разделения, и возможность его использования при дальнейшей переработке. В большинстве исследований отдается предпочтение экстракции, так как только этот метод наиболее удачно совмещает высокую селективность с возможностью организации противоточного непрерывного процесса. В качестве экстрагента наибольшее распространение получил ТБФ, преимущественно извлекающий цирконий из азотнокислых растворов [13—15]. Широко применяются также кислородсодержащие соединения типа эфиров или кетонов, извлекающие прайму щественно гафний из сернокислых растворов, содержащих роданистоводородную кислоту [16—17]. [c.117]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизо-бутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например,ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. Целесообразность применения того или иного способа разделения в крупных промышленных масштабах определяется на основании сравнения основных показателей 1) коэффициента разделения (он должен быть максимальным при небольшом его значении требуется большое число ступеней разделения) 2) производительности (наиболее производительны процессы, обеспечивающие высокую концентрацию циркония и гафния в технологическом цикле, а также высокую скорость) 3) оборудования и условий его эксплуатации 4) сложности процесса (под этим понимают число требуемых химических превращений, стоимость и доступность реагентов, трудность их регенерации). Весьма важно не только сравнение процессов разделения по их показателям, но и то, как они согласуются со схемами переработки циркониевого сырья на металл и соединения [91—93]. [c.330]


Смотреть страницы где упоминается термин Цирконий ионный обмен: [c.116]    [c.136]    [c.159]    [c.136]    [c.159]    [c.221]    [c.186]    [c.262]    [c.557]    [c.252]    [c.253]    [c.300]    [c.447]    [c.448]   
Фотометрическое определение элементов (1971) -- [ c.470 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов



© 2025 chem21.info Реклама на сайте