Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модификация азотом

    Опишите строение неметаллических и металлических модификаций азота, фосфора, мышьяка, сурьмы и висмута. [c.73]

    В другой модификации нитрида бора боразон или эльбор) атомы бора и азота находятся в состоянии хр -гибридизации. Эта модификация имеет кристаллическую решетку типа алмаза (см, рис. 166, а). Она образуется из гексагональной ири высоком давлении порядка [c.440]


    Как видно из изложенного, соединения бора с азотом во многом напоминают соединения углерода. Эту аналогию мы наблюдали на примерах двух модификаций нитрида бора (графито- и алмазоподобного), боразола и его производных. Ее можно проиллюстрировать также следующими примерами  [c.450]

Рис. 1.2. Возможные варианты строения молекул нефти и смазочных масел Совершенствование базовых масел проводится по двум основным направлениям. При первом, масло очищается только до такой степени, чтобы в нем осталось оптимальное содержание смол, кислот, соединений серы, азота и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получать масла достаточно высокого уровня качества, требуемого для современных двигателей. При втором, базовое масло полностью очищается от всех примесей и проводится молекулярная модификация методом гидрообработки (гидрокрекинга, гидроочистки и др.). В результате получается масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к деформациям сдвига при высоких скоростях, нагрузках и температурах, с высоким индексом вязкости и стабильностью физико-химических параметров). Рис. 1.2. Возможные варианты <a href="/info/4829">строения молекул</a> нефти и смазочных масел Совершенствование базовых масел проводится по двум основным направлениям. При первом, масло очищается только до такой степени, чтобы в нем осталось оптимальное <a href="/info/422069">содержание смол</a>, кислот, <a href="/info/133866">соединений серы</a>, <a href="/info/197967">азота</a> и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получать масла достаточно высокого уровня <a href="/info/141391">качества</a>, требуемого для современных <a href="/info/395884">двигателей</a>. При втором, <a href="/info/395870">базовое масло</a> полностью очищается от всех примесей и <a href="/info/31682">проводится молекулярная</a> <a href="/info/1793749">модификация методом</a> гидрообработки (гидрокрекинга, гидроочистки и др.). В <a href="/info/1621062">результате получается</a> масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к <a href="/info/8722">деформациям сдвига</a> при <a href="/info/1263049">высоких скоростях</a>, нагрузках и температурах, с высоким <a href="/info/33808">индексом вязкости</a> и стабильностью <a href="/info/87954">физико-химических</a> параметров).
    Сопоставление элементного состава асфальтенов и смол различных нефтей показывает, что асфальтены богаче смол углеродом, серой, кислородом и азотом и содержат меньше водорода. Отношение углерода к водороду в смолах составляет примерно 8 1, а в асфальтенах 11 1 и более [19]. Сумма гетероатомов (S, N и О) в циклах у асфальтенов почти всегда выше, чем у смол. Хотя асфальтены более устойчивы, чем смолы, тем не менее в процессе хранения при доступе воздуха на свету или при нагревании они переходят в еще более сложную модификацию, не растворимую в растворителях, характерных для асфальтенов, и отвечающую карбенам и карбоидам. При действии на асфальтены (в растворе хлороформа) концентрированной серной кислоты наблюдается также частичный переход их в карбены и карбоиды. [c.33]

    При повторном разделении этиленовой фракции может быть получен этилен с концентрацией 98%. Метод гиперсорбции применяется также для выделения ацетилена, азота и т. д. Недостатком метода является сравнительно быстрая истираемость активного угля, расход которого, однако, может быть снижен до 1 кг на 1 т разделяемых продуктов. Известна модификация метода, в которой активный уголь применяется в виде псевдоожиженного слоя (процесс Флюид-Чар ). [c.306]


    Для некоторых веществ конформация в твердой фазе может зависеть от условий замораживания вещества. Например, при охлаждении 1,1,1-трифтор-З-хлорпропана ниже —103,4° С образуется кристаллическая модификация, в которой все молекулы имеют одинаковую гош-конформацию. При температурах от —103,4°С до температуры плавления вещества (—93,8° С) в кристалле находятся в равновесии оба поворотных изомера, что фиксируется по появлению в колебательном спектре полос анти-изомера. Если же очень быстро охладить вещество жидком азотом (—196° С), то при этом вымораживаются обе конформации, но равновесия между ними нет из-за невозможности преодоления потенциального барьера при низкой температуре. При нагревании такого образца до —157° С все молекулы переходят в гош-конформацию. [c.221]

    Титан (а-модификация) стоек на воздухе. Он начинает окисляться при 600°С, поглощая кислород (до 12,5%) и образуя TiO. Титан энергично взаимодействует с азотом при температуре выше 800 С. [c.530]

    Нитрид бора BN существует в виде двух модификаций. При взаимодействии простых веществ образуется модификация с гексагональной атомно-слоистой структурой типа графита (см. рис. 202). Гексагональные кольца в нитриде бора содержат чередующиеся атомы В и N на расстоянии 1,45 А с углами 120°. Это соответствует sp -гиб-ридизации валентных орбиталей атомов бора и азота. Расстояние между слоями в нитриде бора равно 3,34 А, т. е. короче, чем в графите (3,40А). В отличие от графита BN белого цвета, полупроводник (Д =4,6—3,6 зб). Белый графит легко расслаивается на чешуйки, огнеупорен (т. пл. ЗООО С). Водой разлагается очень медленно при нагревании. Разложение усиливается при действии разбавленных кислот. [c.513]

    В другой модификации нитрида бора (боразон или эльбор) атомы бора и азота находятся в состоянии 5р= -гибридизации. Эта модификация имеет кристаллическую решетку алмаза (см. рис. 201). Она образуется из гексагональной при температуре 1800°С и давлении порядка 60 ООО— 80 ООО ат. Превращение гексагонального нитрида бора в боразон аналогично превращению графита в алмаз. [c.513]

    Азот образует двухатомные молекулы с кратной и очень прочной связью и с очень коротким расстоянием между атомами (0,109 нм). Белый фосфор построен из тетраэдрических молекул (Р4), в которых отсутствуют связи повышенной кратности за счет рп—рл-связывания. Фосфор имеет три основные полиморфные модификации. Сведения о структурах и свойствах этих модификаций фосфора приведены в табл. В.ЗО. Белый фосфор переходит в красный при 400 °С. У мышьяка и сурьмы известны также металлоподобные модификации. [c.530]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикислоты. Однако гетерополикислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH =1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота или кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]

    Интересно рассмотреть модификацию лед И, которая, как видно из диаграммы, не имеет кривой сосуществования лед II —жидкая вода. Если сильно охладить лед II под высоким давлением (например, с помощью жидкого азота), а затем быстро снизить давление до атмосферного и извлечь лед II из аппарата, то эта модификация начнет переходить в устойчивую форму — лед I. [c.54]

    Хотя в настоящее время разработаны различные пути снижения скорости коксообразования (гидрирование молекулярным водородом ненасыщенных углеводородов — предшественников кокса, модификация катализаторов окислами щелочных металлов Се, К, использование цепных ингибиторов коксообразования, например меркаптанов, и т. п.), все еще остается необходимой окислительная регенерация катализатора. Она осуществляется путем выжигания кокса воздухом, смесью воздуха с азотом или паровоздушной смесью основными продуктами такой газификации углеродистых отложений являются СО, СО2, Н2О. [c.95]

    Такие тетраэдры могут образоваться не только из одинаковых атомов. Так, у нитрида бора BN, одна из модификаций (боразон) имеет структуру типа алмаза, но при этом в узлах решетки чередуются атомы бора и азота. Тетраэдрическое окружение атомов бора и азота [c.118]

    Такие тетраэдры могут образоваться не только из одинаковых атомов. Так, у нитрида бора ВМ одна из модификаций (боразон) имеет структуру типа алмаза, но в узлах кристаллической решетки чередуются атомы бора и азота. Тетраэдрическое окружение атомов бора и азота подразумевает образование одной из четырех связей по донорно-акцепторному механизму атом бора предоставляет свободную орбиталь, атом азота — неподеленную пару электронов. [c.131]


    С азотом при температуре около 900° С бор образует нитрид состава ВЫ — бесцветное тугоплавкое вещество (т. пл. 2730° С) гексагональной структуры типа графита, трудно растворимое в воде, химически стойкое, не разлагающееся ни кислотами, ни щелочами. Используется в качестве электрического изолятора при высоких температурах. Гексагональный нитрид бора при давлении 70 ООО атм и 1800° С переходит в другую модификацию структуры алмаза. Эта модификация называется боразоном, обладает такой же твердостью, как и алмаз. [c.173]

    УА-группу составляют пять элементов азот Ы, фосфор Р, мышьяк Аз, с у р ь м а 8Ь и в и С М у т В1. Наличие пяти электронов на внещнем энергетическом уровне их атомов (rts np ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную —3. Однако по мере увел чения числа энергетических уровней в атоме и особенно при проявлении экранирующего ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200°С и 1,2 ГПа (12 000 атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства и, наконец, висмут — металл, проявляющий хрупкость, что характерно для неметаллических кристаллов. Усиление металлических черт в характере элементов явно проявляется в значениях ширины запрещенной зоны (см. рис-. 28) для кристаллов простых веществ, образованных ими. Так, (Для черного фосфора А =1,5 эВ, для серого мышьяка 1,2 эВ, для серой сурьмы 0,12 эВ, а висмут является проводником электричества. [c.251]

    При более высоких температурах (1400—1800°С) и давлениях (свыше 6 гПа, т. е. 60 000 атм) бор и азот образуют алмазоподобную (кубическую) модификацию (ВМ) — боразон. [c.290]

    Физические свойства. Обычной устойчивой модификацией азота является диатомный азот N2, при обычных условиях давления и температуры — бесцветный газ, не обладающий запахом и вкусом. [c.511]

    Структуры простых веществ элемен-тов-органог енов, т. е. элементов, стоящих в таблице Д. И. Менделеева (стр. 267) справа сверху от диагональной границы, являются, главным образом, молекулярными. Таковы же структуры и у большинства соединений этих элементов друг с другом. Молекулярные соединения характеризуются тем, что между атомами в молекулах действуют ковалентные связи, а между молекулами — остаточные. Поэтому каждую молекулярную структуру необходимо характеризовать двумя системами величин — внутримолекулярными (ковалентными) расстояниями и межмолекулярными (Ван-дер-Ваальсовыми). Остаточные силы являются силами ненаправленными, и поэтому молекулы стремятся упаковаться в структурах плотнейшим образом. Если молекулы одноатомны , как у благородных газов, или вращаются, как в кристаллической структуре водорода или у высокотемпературной модификации азота, то структуры получаются в виде идеальных плотнейших шаровых упаковок. Если же молекулы малосимметричны, то и структуры обычно имеют низкую симметрию. [c.356]

    Ниже — 237,7° азот, как это впервые установили Кеезом и Каммерлинг Оннес на основании опытов по исследованию его удельной теплоемкости, превращается в другую модификацию. Эта устойчивая при низких температурах модификация азота ярко светится при освещении катодными лучами, причем спектр этого свечения очень похож на своеобразный спектр северного сияния. Выше температуры превращения азот трудно заставить светиться, и тогда он дает другой спектр (Vegard, 1924). [c.634]

    И 51Н4. Низкотемпературная а-модификация азота обусловлена квадрупольным взаимодействием между соседними молекулами азота. Тепловое движение при повышенной температуре нарушает квадрупольное взаимодействие и приводит к свободному вращению. Интерпретация этих структур, к сожалению, лишь качественная, и в дальнейшем, вероятно, нужно учесть трехцентровое взаимодействие. [c.265]

    Связь между неорганической и органической химией ярко проявляется при сопоставлении р.чда соединений азота и углерода. Особенно показательно сопоставление нитрида бора BN с углеродом С и боразола BзNзH5 с бензолом СеНв. Нитрид бора образуется из простых веществ при 900 °С в виде модификации, структура которой аналогична слоистой структуре графита. При 1350 °С и 6,2-10 Па образуется алмазоподобный боразон ВК, на основе которого изготовляют режущий инструмент, не уступающий алмазному. [c.124]

    Из этих данных видно, что асфальтены богаче, чем смолы, углеродом, серой, кислородом и азотом и содержат меньше водорода. Отношение углерода к водороду в смолах составляет приблизительно 8 1, у асфальтенов 11 1 и выше. Химические свойства асфальтенов изучены очень мало. Хотя асфальтены, очевидно, более устойчивы, чем смолы, однако в процессе длительного хранения при доступе воздуха на свету или при нагревании они переходят в еще более сложную модификацию, не растворимую в растворителях, характерных для асфальтенов, отвечающую карбе-нам или карбоидам. При действии па асфальтены (в растворе [c.72]

    Поскольку строение молекул СО и N2 аналогично, сходны и их физические свойства. Так, как и азот, СО имеет очень низкую температуру плавления (—204°С) и кипения (—191,5°С) стандартная энтропия СО (197,3 дж1град-моль) близка таковой азота (191,3 дж1град)4 хмоль)] в твердом состоянии оксид углерода (И), как и азот, существует в виде двух модификаций (кубической и гексагональной) плохо растворяется в воде и т. д. Сходство проявляется также в структуре спектров СО и N3. [c.460]

    Соединения бора с азотом имеют две полиморфные модификации алмазо- и графитоподобную. Графитоподобная модификация нитрида бора имеет структуру графита (см. рис. 16.2), в которой атомы бора чередуются с атомами азота, как в плоскостях, образуемых шестичленными кольцами, так и в перпендикулярных слоям плоскостях. Он легко расслаивается на чешуйки, маслянистый на ощупь, но, в отличие от графита, бесцветен и неэлектропроводен. На основе данной модификации нитрида бора созданы высококачественные смазывающие материалы для движущихся частей машин и аппаратов (см. разд. 36.2.6). Другой нитрид бора — алмазоподобный (см. рис. 16.1), получается из графитоподобного при высоком давлении (7 МПа) и высокой температуре (1380 °С) в виде бесцветных, сверхтвердых и неэлектропроводных кристаллов. Технические названия данного нитрида бора — элъбор, кубонит, боразол. Это вещество немного уступает по твердости только алмазу, но значительно превосходит его по термостойкости выдерживает нагревание на воздухе до 2000 °С, в то время как алмаз сгорает уже при 800 °С. Алмазоподобный нитрид бора используется как сверхтвердый материал для обработки металлов, при буровых работах. [c.399]

    Подобно тому, как современный химик начинает исследование неизвестного соединения с изучения его свойств, так и на заре органической химии особенности свойств веществ растительного и животного происхождения летучесть, горючесть, легкая измен 1емость и т. п. позволили усмотреть их общую природу и выделить в специальный класс. Но качественное исследование органических веществ не могло дать сколько-нибудь удовлетворительной основы для понимания их свойств или поведения. Без количественного подхода, без знания состава соединений химики блуждали в потемках, оказывались в мире шатких, произвольных, ошибочных умозаключений. Еще в начале прошлого века высказывалось убеждение, что существует лишь одна единственная органическая кислота, которая выступает в многообразных модификациях. Подлинно научная история органической химии начинается с классических работ Лавуазье по количественному анализу соединений растительного и животного происхождения, к которым отныне могли быть применены принципы атомистической гипотезы. При этом сразу же выявилась специфика органических веществ если в минеральном мире так называемые радикалы, т. е. бескислородные остатки (сера в серном ангидриде, железо в окислах и т. п.) весьма просты, то органические радикалы сами по себе сложны и состоят из водорода, углерода, азота и некоторых других элементов. Вывод Лавуазье породил целую серию попыток обнаружить органические радикалы. [c.6]

    По сравнению с азотом для фосфора отрицательная поляризация менее характерна наличие свободных валентпых орбиталей Зо -состояния и неразделенной электронной пары при атоме фосфора создает возможность возникновения между атомами фосфора ковалентной связи по дативному механизму, что повышает прочность связи Р—Р по сравнению со связью М—N. Это находит отражение, в частности, в образовании различных аллотропических модификаций фосфора Р( — белый фосфор и высокомолекулярные модификации красного и черного фосфора. [c.303]

    Кремний обычно получают путем восстановления диоксида кремния 5102 магнием. Кремний представляет собой бурыЛ аморфный порошок ( аморфный кремний ). Известна также кристаллическая модификация кремния. Кристаллический кремний довольно инертное вещество, тогда как аморфный — значительно более реакционноспособеи. С фтором он реагирует при обычных условиях, а с кислородом, хлором и серой — при 400— 600°С. При очень высоких температурах кремний соединяется также с азотом и углеродом. [c.200]

    В особых условиях удавалось получать для серы малоустойчивые разновидности и иных типов. Например, при замораживании (жидким азотом) сильно нагретых паров серы получается ее устойчивая лишь ниже —80 С пурпурная модификация, по-видимому, образованная молекулами Зг. Лучше других изучена форма, извлекаемая толуолом из подкисленного раствора N328203. Ее оранжево-желтые кристаллы образованы кольцеобразными молекулами 8в [с параметрами (88) = 2,06 А и 888 = 102°]. Резким охлаждением насыщенного раствора серы в бензоле может быть получена состоящая из молекул За метастабильная перламутровая модификация (8 ). Довольно сложным путем была получена форма, слагающаяся из циклических молекул 812 [ (88) — [c.321]

    УА-группу составляют пять элементов азот N. фосфор Р, мышьяк Аз, сурьма 8Ь и висмут В1. Наличие пяти электронов на внешнем энергетическом уровне их атомов (пз пр ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную -3. Однако по мере увеличения числа энергетических уровней в атоме и особенно при проявлении экранируюш его ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200 °С и 1,2 ГПа (12 ООО атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства [c.335]


Смотреть страницы где упоминается термин Модификация азотом: [c.305]    [c.114]    [c.326]    [c.44]    [c.253]    [c.46]    [c.603]    [c.147]    [c.223]    [c.169]    [c.16]    [c.161]    [c.214]    [c.509]   
Смотреть главы в:

Фенольные смолы и материалы на их основе -> Модификация азотом


Фенольные смолы и материалы на их основе (1983) -- [ c.114 , c.115 ]




ПОИСК







© 2025 chem21.info Реклама на сайте