Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пары серы

    Эффективность установок производства серы из кислых газов обычно оценивают по общей степени конверсии сероводорода. Однако, с точки зрения воздействия на окружающую среду, важно общее количество диоксида серы, выбрасываемое через дымовую трубу в атмосферу, которое включает как не прореагировавшие ЗО и другие сернистые соединения, так и потери конечного продукта -газовой серы, поскольку все эти компоненты сбросных газов окисляются в печи дожига до Большинство отечественных установок по производству серы включает в себя установки доочистки хвостовых газов по методу Сульфрен . Последние по существу представляют собой каталитическую ступень процесса Клауса, осуществляемую периодически при температуре ниже точки росы серы. Позтому для таких установок важно учитывать унос паров серы с газовым потоком. [c.162]


    Масса атома серы в два раза больше массы атома кислорода. Можно ли на этом основании считать, что плотность паров серы по кислороду равна двум а) можно б) нельзя  [c.23]

    При нагревании паров серы и бутана до температуры около 570° с продолжительностью пребывания паров в реакционной зоне около 2 сек. образуется тиофен [52]. Можно полагать, что реакция проходит через несколько фаз. Сначала, вероятно, происходит дегидрирование бутана серой в бутадиен, который затем реагирует с серой с образованием тиофена  [c.146]

    При взаимодействии паров серы с бутаном при высокой температуре образуется тиофен [c.505]

    Гомогенные процессы основаны на реакциях между реагентами, находящимися в одной фазе, и не имеют поверхности раздела отдельных частиц системы друг от друга. В промышленных печах гомогенные процессы осуществляются в основном в газовой фазе. К ним относятся окислительные экзотермические реакции горения различных газов, протекающие в пламенах (например, окисление метана, сероводорода, оксида углерода, водорода, синтез хлористого водорода и т. д.). Условно к гомогенным процессам можно отнести окисление паров серы, фосфора, жидких топлив, потому что непосредственно химическая реакция протекает между паровой фазой окисляемого реагента и газовой средой окислителя, которые совместно образуют горючую газовую фазу. На эти реакции могут быть распространены закономерности гомогенных процессов. [c.23]

    В этом процессе исключена термическая ступень, а каталитические ступени осуществляются, как в процессе Клауса, но при более высоких температурах. Кислый газ подогревается, смешивается с избытком воздуха и поступает в каталитический конвертор первой ступени, на выходе из которого температура поддерживается в интервале от 480 до 510 °С. Полученные продукты состоят из паров серы и некоторого количества H2S. Этот поток проходит через конденсатор серы, охлаждаясь водой до 150°С, за счет чего получается пар низкого давления. Сконденсировавшаяся сера поступает на склад, а газы, смешиваясь с подогретым воздухом и некоторым количеством горячих газов из первой ступени, направляются на вторую каталитическую ступень. Общая конверсия сероводорода в серу не превышает при этом процессе 85%. [c.188]

    Дисульфид углерода С5г (сероуглерод) в обычных условиях — летучая бесцветная жидкость (т. пл. —111,6°С, т. кип. —46,3 С). Получают его взаимодействием паров серы с раскаленным углем. Сероуглерод — эндотермическое соединение (АН° = + 122 кДж/ моль), легко окисляется, при небольшом нагревании воспламеняется на воздухе  [c.401]


    Дальтон использовал данные Гей-Люссака для доказательства того, что равные объемы газов не содержат равного числа молекул это было еще одной его ошибкой, подобно правилу простоты. Рассуждения Дальтона иллюстрируются при помощи рис. 6-6,я. По иному пути пошел итальянский физик Амедео Авогадро (1776-1856). Он исходил из предположения, что равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. Как показывает рис. 6-6,6, это предположение требует, чтобы газы таких реагирующих между собой элементов, как водород, кислород, хлор и азот, состояли из двухатомных молекул, а не просто из изолированных атомов. Если бы идеи Авогадро, опубликованные им в 1811 г., сразу же получили признание, это избавило бы химию от полувекового периода путаницы. Однако для большинства ученых идеи Авогадро представлялись всего лишь шатким предположением (равное число молекул в равных объемах), основанным на еще более шатком допущении (о двухатомных молекулах). В те времена представления о химической связи почти всецело основывались на учете сил электрического притяжения или отталкивания, и ученые с трудом могли представить себе, чтобы между двумя одинаковыми атомами могло возникнуть какое-либо другое взаимодействие, кроме отталкивания. Но если они все же притягиваются друг к другу, почему же тогда не образуются более сложные молекулы, как, например, Н3 или Н4 Шведский химик Йенс Якоб Берцелиус (1779-1848) пытался использовать данные о парах серы и фосфора, чтобы опровергнуть идеи Авогадро. Однако Берцелиус не понимал, что в этих случаях он имел дело как раз с примерами еще более сложных агрегатов (8 и Р4). Сам Авогадро не мог помочь делу он пользовался настолько путаной терминологией, что иногда казалось, будто он говорит о расщеплении атомов водорода (атомы он называл простыми молекулами ), а не [c.285]

    Технологический процесс получения сероуглерода основан на пропускании паров серы через раскаленный древесный уголь при [c.90]

Рис. 4.35. Равновесная упругость паров серы над различными катализаторами Рис. 4.35. <a href="/info/315301">Равновесная упругость</a> <a href="/info/421494">паров серы</a> над различными катализаторами
    Более современным методом является получение сероуглерода прямым синтезом из метана или природного газа с парами серы в присутствии катализатора (силикагеля). Процесс — непрерывный, проходит при 500—700 °С. В каталитическую камеру, изготовленную из хромоникелевой стали, поступает смесь метана и паров серы. Реакция проходит по уравнению [c.91]

    Расчетные данные в низкотемпературной зоне согласуются с экспериментальными данными [72], где показано, что в зоне низких температур пары серы состоят в основном из молекул Зз. Следовательно, реакция получения серы из сероводорода является сложной и должна быть записана в виде  [c.351]

    Для реакции взаимодействия железа с парами серы [c.132]

    Выделение серы начинается при температуре около 500 °С и ускоряется с дальнейшим ее повышением. Пары серы сгорают с образованием двуокиси серы  [c.37]

    При выборе типа электродов преимущество следует отдавать графитирован-ным, стойким к парам серы. [c.239]

    Если в сероводороде присутствует H N, процесс сжигания H S ведут при недостатке кислорода (а< 1). В этом случае вследствие окисления H N образуются не оксиды азота, а элементарный азот, и таким образом предотвращается загрязнение продукционной серной кислоты оксидами азота. При недостатке кислорода в печи выходящий из нее печной газ содержит некоторое количество несгоревшего сероводорода или паров серы. Для полного окисления серы газ направляют в камеру дожигания, куда вводится необходимое количество воздуха. [c.38]

    Процесс горения капли серы зависит от условий сжигания (температура в камере горения и относительная скорость газового потока) и физико-химических свойств жидкой серы (наличие в сере твердых зольных примесей, битумов и др.) и состоит иэ следующих последовательных стадий 1) смешение капель жидкой серы с воздухом 2) прогрев капель серы и их испарение 3) термическое расщепление паров серы 4) образование газовой фазы и воспламенение ее  [c.39]

    На рис. 4.3 приведен график для определения температуры, ниже которой возможна конденсация паров серы. Точки пересечения кривой давления насыщенных паров серы с кривыми упругости паров серы при давлениях 2,5 5 10 и 15 МПа характеризуют те минимальные температуры, которые допустимы в каталитической зоне без опасения конденсации паров серы на поверхности катализатора. [c.99]

    Для более детального практического изучения процесса на малосернистом природном газе при давлениях, имеющих место на практике, была спроектирована и изготовлена модельная установка прямого каталитического окисления производительностью по сырому газу до 10 м /ч. Сырьем дня установки служил природной газ месторождения Северный Мубарек, содержащий 0,3...0,4% об. сероводорода. Природный газ подогревался до температуры 250...300°С, смешивался со стехиометрическим количеством воздуха и поступал в зону каталитической реакции, где протекает окисление сероводорода до элементной серы. Газ, содержащий пары серы, отводился из зоны реакции и охлаждался. При охлаждении сера конденсировалась, а очищенный газ подавался на дальнейшую переработку. [c.99]


    По результатам исследований разработана технология и спроектирована опытно-промышленная установка на Оренбургском ГПЗ. При работе на одном реакторе процесс позволяет полностью удалить тиолы из газов регенерации цеолитов, а сероводород окислить на 70-90%. Варьированием режима не удается в одну ступень достичь полной конверсии сероводорода в смеси с тиолами, что, по-видимому, объясняется вторичной реакцией взаимодействия тиолов с парами серы с образованием сероводорода. Топливный газ, соответствующий требованиям по содержанию сероводорода и тиолов для бытового потребления, может быть получен при двухступенчатом ведении процесса окислительного обессеривания. [c.112]

    Режим процесса позволяет создать высокую концентрацию паров серы в газовой фазе, а последующее охлаждение реакционных газов [c.129]

    Образующаяся смесь паров серы и сероводорода дополнительно подогревается до 445°С и направляется на экстракцию, которая осуществляется сероуглеродом в три ступени при 40...60°С. После отгона экстрагента полученную полимерную серу высушивают и взвешивают. Выход целого продукта рассчитывают по формуле [c.132]

    Г азы регенерации поступают в конвертер 5. Состав поступающего в конвертер газа H S 1,25 СО, 3...4% об. давление 5...5,5 МПа температура 220...230°С. Для окисления сероводорода в элементную серу в конвертер подается воздух. В результате экзотермической реакции взаимодействия сероводорода с кислородом воздуха, температура в зоне реакции возрастает до 270...300°С. В конвертере происходит образование серы. Полученная в зоне реакции парообразная сера уносится газовым потоком, охлаждается в аппарате воздушного охлаждения 6 до 140...150°С и поступает в сероуловитель 7, где пары серы и воды конденсируются, затем при температуре 125...130°С и давлении [c.135]

    Унос паров серы из реакторов установок Сульфрен в условиях фазового равновесия с серой, заполняющей поры катализатора, снижает, достигаемую в процессе, степень извлечения серы на 2,5 % [1]. Для снижения потерь серы с паровой фазой в процессе Сульфрен необходимо применять катализаторы с максимальным объемом микропор радиусом менее ЗОА. [c.162]

    При 444,6°С сера закипает. В зависимости от температуры в ее па-рах обнаружены молекулы Sg, Sf S4 и Sj. Изменение состава молекул ьызывает изменение окраски паров серы от оранжево-желтого до соломенно-желтого цвета. При температуре выше 1500 "С молекулы диссоциируют на атомы. Молекулы S2 парамагнитны и построены ана-jrarH4H0 молекуле Oj. Во всех других состояниях сера диамагнитна. [c.324]

    Упругость паров серы над катализатором с увеличением времени от начала фазы адсорбции существенно возрастает (рис. 4.35). При этом рост давления паров тем больше, чем меньше в катализаторе объем микропор, а сама упругость паров и, соответственно, потери серы тем ниже, чем меньше радиус микропор. Унос паров в условиях фазового равновесия с серой, заполняющей поры катализатора, умень- [c.163]

    Диаграмма состояния серы схематически представлена на рис. 3.67. При нагревании жидкой серы изменяется ее молекулярный состав. Вблизи точки плавления жидкая сера имеет светло-желтую окраску и малую вйзкость она состоит из молекул 5в. Дальнейшее нагревание (примерно выше 160 °С) вызывает превращение желтой легкоподвижной жидкости в малоподвижную темно-коричневую массу, вязкость которой достигает максимума при 187 °С, а затем снижается. При температуре выше 300 °С 1кидкая сера, оставаясь темно-коричневой, снова становится легкоподвижной. Эти аномальные изменения обусловлены тем, что разорвавшиеся кольца Зз превращаются в цепочечные структуры, смыкающиеся концевыми атомами серы, причем нагревание приводит к постепенному уменьшению длины цепей. При температуре кипения пар серы содержит 59% (об.) Зе, 34% Зе, 4% З4 и 3% За. После кипения пар серы меняет свою окраску, что обусловлено постепенным смещением равновесия в газовой фазе от За к 3  [c.444]

    Быстрым охлаждением газовой фазы (закалка равновесия) получают сероуглерод S2. Его синтезируют также из метана (природный газ) и паров серы при 500—700 °С с применением силикагеля в качестве катализатора  [c.362]

    При высоких температурах вопрос об основном стандартном состоянии элемента во многих случаях существенно усложняется и выбор его становится еще более условным. Пары серы, селена, фосфора, мышьяка, натрия, калия и некоторых других элементов обладают сложным молекулярным составом, который меняется с температурой. Так, в парах серы содержатся в равновесии молекулы 82, 5б, 83 и другие относительное содержание их зависит от температуры и давления. В подобных случаях чаще всего целесообразно принять в качестве основного стандартного состояния элемента газ, состоящий из молекул одинакового состава. Так, в настоящее время в качестве основного состояния для серы и фосфора иногда принимают газ с двухатомными молекулами, а для лития, натрия и калия — газ с одноатомными молекулами. При наличии необходимых данных расчет свойств реального газа не представляет затруднений. [c.24]

    Кислогудронный кокс отличается от обычного нефтяного кокса пирофорными свойствами и способностью непосредственно реагировать с парами серы с образованием сероуглерода. [c.571]

    Кривая давления пара серы ромбической ЕЛО и кривая давления пара серы моноклинической ВАС (рис. ХП, 5) пересекаются в точке Л, соответствующей температуре 95,5°С и лежаш,ей ниже кривой давления пара жидкости КСО. При температурах ниже 95,5 °С давление пара серы моноклинической выше давления пара серы ромбической. Поэтому при температуре, например, возможен самопроизвольный переход 5 - 5р. При температурах выше 95,5°С, например давление пара выше у серы ромбической, и превраш,ение должно идти в обратном направлении 5р- 5 . Такого типа взаимные превра-щениядвух кристалллических модификаций, которые могут протекать самопроизвольно и в прямом и в обратном направлении в зависимости от условий, называются энантиотроп-ными превращениями. [c.365]

    В парах серы с увеличением температуры число атомов в молекуле постепенно уменьшается За5зЗг3. Прн 800—1400 °С пары серы состоят главным образом пз молекул 2, при 1700 °С — из атомов. [c.382]

    Сероуглерод S2 получается пропусканием паров серы сквозь лой раскаленного угля. Это бесцветная, сильно преломляющая вет летучая жидкость, кипящая при 46 °С. При долгом хранении ероуглерод желтеет и приобретает неприятный запах. [c.445]

    В нефтяной промышленности процессы с псевдоожиженным слоем применяются и в ряде других областей в процессах контактного коксования, гидроформинга, обессеривания, адсорбционного разделения углеводородов и т. д. Кроме того, техника псевдоожиженного слоя применяется и в других технологических процессах — в черной металлургии, химической промышленности (например, при производстве чистой окиси хрома из хромистых руд, при коксовании углей, выделении кислорода из воздуха путем адсорбции кислорода в псевдоожиженном слое манганитом кальция, плюмбитом кальция или окисью маоганца при производстве сероуглерода из пылевидного угля и паров серы, в производстве водорода при взаимодействии закиси железа с водяным паром в реакторе с последующей регенерацией окиси железа и т. д.). [c.8]

    Продукты окисления - пары серы н реакционной воды в смеси с углеводородами поступают в ко-теп-у изатор КУ-1, где конденсируются. Жидкая сера стекает а сборник жидкой серы Е-1, обогре-агемый паром. Очищеннь.й газ с температурой 100...120°С поступает 3 к/жнюю часть сероуловителя СУ-1. Газы, после конденсатора серы, охлаждаются водой и направляются в топ.пивную сеть завода или печь дожига кислого газа. Предварительные опыты проводились на смесях газов, составленных путем смешения сероводорода с инертным газом. Объемная доля сероводорода в смеси варьировала в пределах [c.125]

    Рассчитаны количество тепла О,, выделяемое при окислении сероводорода, энергозатраты О, на перегрев смеси паров серы и сероводорода и общий энергетический баланс 0з=0,+02. Повышение концентрации сероводорода в исходном газе приводит к увеличению выделения тепла в процессе окиспения (рис. 4.26). При этом энергозатраты на дополнительный перегрев паров реакции окисления уменьшаются. Общий энергетический баланс остается положительным и является избыточным для данного процесса. При повышении температуры до 300°С энергозатраты снижаются. Дальнейшее повышение температуры приводит к снижению выхода продукта, видимо, из-за пере-окисления сероводорода. [c.133]

    Схема процесса Модоп приведена на рис. 4.44 [1]. Отходящий газ с установок Клауса нагревают в восстановительном генераторе 1 до 280 С и подают в реактор гидрирования 2, где SOj, OS, Sj и пары серы превращаются на катализаторе в сероводород. При этом объемная доля СО, содержащегося в отходящих с установки Клауса газах, снижается до 0,01%. Очищаемый газ охлаждают в котле-утилизаторе 3, теплообменнике газ/газ 4 с последующим адиабатическим охлаждением в колонне 5 при непосредственном контакте с охлажденной циркулирующей водой. Объемная доля воды при этом снижается с 30% примерно до 4%. Водный конденсат непрерывно отводят и подают в отпарную колонну для выделения кислой воды. На следующей ступени сероводород селективно окисляют воздухом в [c.177]

    Сорт нефти Плотность Кинематическая аэкость, сст Температура зас- Пара- Сера,  [c.90]

    Известнь и другие формы серы. Так, при быстрой конденсации паров серы на поверхности, охлаждаемой жидким азотом, получается пурпурная сера. Повышение давления также вызывает аллотропные превращения серы. [c.444]

    Селен известен в нескольких модификациях. Наиболее устойчив серый селен, т. пл. 219°С, т. кип. 685 °С, его кристаллическая решетка состоит из спиральных цепей, расположенных параллельно друг другу. Менее устойчивы красный селен (две разновидности в структуре кольца See) и черный стекловидный селен (в структуре перепутанные зигзагообразные цепи). Серый и стекловидный селен являются полупроводниками. В паре селена имеют место равно1зесия между молекулами 8е . (л = 8-н1), подобные существующим в паре серы, но в соответствии с меньшей прочностью Se (г) они смещены вправо. [c.456]


Смотреть страницы где упоминается термин Пары серы: [c.187]    [c.90]    [c.380]    [c.63]    [c.238]    [c.100]    [c.130]    [c.134]    [c.162]    [c.180]    [c.132]   
Смотреть главы в:

Коррозия и защита от коррозии -> Пары серы




ПОИСК





Смотрите так же термины и статьи:

Воспламенение расплавленной серы ( 91). Горение меди в парах серы ( 92). Воспламенение селена в кислороде ( 93). Взаимодействие селена и железа ( 94). Демонстрация селенового фотоэлемента

Вязкость паров серы

Давление насыщенного пара над жидкой двуокисью серы

Давление насыщенного пара серы и ее модификаций

Давление паров двуокиси серы

Давление паров над диоксидом серы жидким

Давление паров насыщенных над серой

Давление паров полухлористой серы

Давление паров серы над дисульфидом железа

Давление паров серы при выплавке

Давление паров трехокиси серы над олеумом

Давление паров триоксида серы

Двуокись серы давление пара

Двуокись серы давление пара над растворами

Двухлористая сера, давление паро

Зависимость давления паров растворов двуокиси серы от температуры

Коррозия, вызываемая парами серы, сернистым ангидридом и сероводородом

Плотность жидкой двуокиси серы и ее насыщенного пара, находящихся в равновесии (ортобарические плотности)

Получение серы разложением железного колчедана водяным паром и сернистым ангидридом

Получение сульфидов, селенидов и теллуридов при взаимодействии паров серы, селена и теллура или их водородных соединений с простыми веществами

Сера азидами металлов молекулярный состав паров анилином

Сера как промотор при полимеризации влияние их на никелевый катализатор при реакции метана с водяным паром

Сера, адсорбция железом из бензиновых паров

Сера, давление и состав пара

Серебра хлорид, растворимость Серы двуокись давление паров

Сернистый ангидрид Двуокись сеРы давление паров

Сернокислотная абсорбция трехокиси серы и водяных паро

Серный ангидрид Трехокись серы давление паров

Сероуглерод S2—бесцветная, летучая жидкость. В воде не растворяется, но придает ей запах. В воздухе легко воспламеняется Образуется S2 при прохождении паров серы над раскаленным угВажнейшие свойства S2 приведены ниже - Молекулярная масса

Состав газообразной серы при общем давлении ее паров, равном 1 ат

Степень диссоциации паров серы

Трехокись серы давление паров

Триоксид серы Серный ангидрид давление паров

Удельный объем паров серы



© 2025 chem21.info Реклама на сайте