Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гормоны содержание аминокислот

    Биохимические функции. Глюкокортикоиды стимулируют катаболические процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку-лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени. [c.159]


    В таких комплексах центральный атом и связ анные с ним группы расположены в одной плоскости. Аналогично построенные, но менее прочные / п+ -комплексы аминокислот часто обладают свойством повышать содержание сахара в крови, подобно гормону поджелудочной железы глюкагону (стр. 885). Комплексы аминокислот с тяжелыми металлами могут стабилизоваться при участии боковых [c.354]

    Небольшие органические молекулы, находящиеся в живых тканях, можно разделить на две большие группы. Одна из них включает водорастворимые вещества, такие, как аминокислоты и сахара, нерастворимые в апротонных растворителях (хлороформе или эфире). Другая группа охватывает жирорастворимые вещества, которые растворяются в хлороформе, эфире или других органических растворителях, но обычно не растворяются в воде. Эти соединения носят общее название липиды. Ясно, что такое грубое разделение, основанное на способности к растворению в определенных типах растворителей, не учитывает общие специфические структурные особенности соединений. Внутри каждой обширной группы веществ можно выделить ряды соединений с общими функциональными группами и характерными структурными особенностями. Низкая растворимость в воде предполагает, что в липидах преобладают неполярные (т. е. углеводородные) фрагменты, а высокополярные группы и группы, обладающие способностью образовывать водородные связи, или вообще отсутствуют, или составляют незначительную часть молекулы. Среди соединений, входящих в класс липидов, встречается немало таких, которые имеют чрезвычайно большое значение для биологии. К ним относятся витамины А и О (разд. 22.2) и стероидные гормоны (разд. 22.2), находящиеся в следовых количествах и все вместе составляющие лишь очень малую часть от общего содержания липидов в любой живой системе. [c.329]

    Метионин — незаменимая аминокислота, необходимая для поддержания азотистого равновесия организма. Вместе с цис-тином содержит основную массу серы белков. Участвует в биосинтезе холина. адреналина, креатина и других биологически важных соединений активизирует действие витамина В12, гормонов, фолиевой и аскорбиновой кислот, ферментов. Обезвреживает различные токсические продукты. При атеросклерозе приводит к снижению содержания холестерина в крови и повышению содержания фосфолипидов. Применяется в средствах для питания кожи, а также против перхоти и выпадения волос [c.80]


    Сера — элемент, значение которого в питании определяется в первую очередь тем, что он входит в состав белков в виде серосодержащих аминокислот (метионина и цистина), а также в состав некоторых гормонов и витаминов. Содержание серы обычно пропорционально содержанию белков в пищевых продуктах, поэтому ее больше в животных продуктах, чем в растительных. Потребность человека в сере (около 1 г в день) удовлетворяется обычным суточным рационом. [c.69]

    Содержание основных аминокислот в гормонах и энзимах, не содержащих [c.81]

    Содержание аро.матических аминокислот в гормонах и в энзимах, не содержащих металла [c.157]

    Гормоны панкреатической (поджелудочной) железы. Панкреатическая железа — железа и внешней и внутренней секреции. В ткани поджелудочной железы имеются группы клеток в виде маленьких островков, которые не связаны с протоками железы. Эти островки получили название островков Лангерганса в них вырабатывается гормон панкреатической железы — инсулин. Островки Лангерганса обильно снабжены кровеносными сосудами, поэтому инсулин легко проникает в кровяное русло. Инсулин оказывает сильное влияние на углеводный обмен понижает содержание сахара в крови, активирует синтез гликогена из глюкозы, увеличивает клеточную проницаемость по отношению к глюкозе кроме того, инсулин активирует синтез белков из аминокислот и тормозит образование углеводов из белков и жиров. [c.146]

    Параллельно с указанными изменениями в углеводном обмене отмечаются определенные изменения и в азотистом (белковом) обмене. Так, у животных с удаленными надпочечниками отмечается не только понижение содержания сахара в крови, но и уменьшение выделения азота с мочой. Наоборот, введение кортикостероидных гормонов ведет не только к повышению уровня сахара в крови, но и к увеличению содержания азота в моче. Параллелизм между этими двумя явлениями позволил сформулировать экспериментально подтвержденное предположение о том, что кортикостероидные гормоны стимулируют образование сахара (глюкозы) из продуктов распада белков (аминокислот). По-видимому, функция гормонов коры надпочечников в белковом обмене заключается в задержке синтеза и в усилении распада белков, в стимуляции синтеза углеводов из аминокислот, образовавшихся при этом усиленном распаде белков, или из аминокислот, не использованных в результате заторможенного белкового синтеза. [c.195]

    Как и следовало ожидать, гормон роста вызывает увеличение веса тела. Активность гормона роста обычно измеряется по увеличению ширины проксимального эпифизарного хряща большеберцовой кости у экспериментальных животных. После введения гормона роста гипофизэктомирован-ным животным содержание белка в организме увеличивается, в связи с чем происходит задержка азота в организме и уменьшается количество азота, выделяемого с мочой. Это находится в полном соответствии с многократно подтвержденным фактом уменьшения содержания аминокислот в крови после инъекции соматотропина как нормальным, так и гипофизэктомиро-ванным животным. У людей также наблюдалось понижение содержания аминокислот в крови на 21—47%, если соматотропин и аминокислоты одновременно инъецировались внутривенно. Параллельно приросту в весе наблюдается задержка воды в организме. [c.196]

    Сера входит в состав почти всех белков тела. Особенно много серы находится в протеиноидах опорных тканей, например в кератине волос, рогах, шерсти и т. д., отличающихся высоким содержанием аминокислоты цистина. Сера встречается также в составе эфиросерных кислот, трипеп-тида глютатиона, витаминов, гормонов (например, в окситоцине) и ряде других органических соединений, играющих большую роль в обмене веществ. [c.391]

    Приведенные в табл. 6.1 данные показывают, что аминокислотный состав представленных белков существенно различается. Например, в гормоне инсулине отсутствуют триптофан и метионин, а В миоглобине — цистеин н цистин. В табл. 6.1 содержание различных аминокислот выражено в граммах на 100 г исходного белка при суммировании получим, что на 100 г белка приходится 118 г аминокислот (с учетом одной молекулы воды на каждую гидролизуемую пептидную связь). Если же при расчете содержания аминокислот учитывать массу аминокислотных остатков, а ие свободных аминокислот, то суммарное содержание аминокислот в белке, не содержащем неаминокислотных компонентов, должно составлять 100%. Приведем пример такого расчета. При гидролизе инсулина образуется 8,6 г свободного фенилаланина на 100 г белка (табл. 6.1). В пересчете на массу аминокислотного остатка это составляет 8,6-147/165=7,7 г на 100 г белка, поскольку молекулярная масса фенилаланина 165, а масса остатка фенилаланина в белках 147. [c.168]

    Последние четыре белка, приведенные в табл. 42, — гормоны, но и здесь нет заметного. различия в содержании разных аминокислот, кроме тиреогло 5улина, в состав которого входят иодированные аминокислоты. В инсулине много цистеина и цистина, но их много и в кератине. Известно также, что аминокислотный состав высокоспецифичных белков зависит от источника выделения, что было показано, например, на инсулине (Хкрфенист, 1953). [c.656]

    Химическая природа гормонов фолликулярной части щитовидной железы выяснена в деталях сравнительно давно. Считается установленным, что все йодсодержащие гормоны, отличающиеся друг от друга содержанием йода, являются производными Ь-тиронина, который синтезируется в организме из аминокислоты Ь-тирозина. [c.265]


    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Адреналин и глюкагон осуществляют регуляцию метаболизма гликогена путем изменения активности гликогенфосфорилазы и гликогенсинтазы (через цАМФ) таким образом, что торможение гликогеногенеза и стимуляция гликогенолиза осуществляются одновременно, т. е. реципропно. Глюкокортикоиды (11-гидроксистероиды) усиливают глюконеогенез за счет интенсификации катаболизма белков и аминокислот в тканях и вовлечения промежуточных метаболитов в процесс глюконеогенеза. Таким образом, в рассмотренных случаях адреналин, глюкагон, глюкокортикоиды действуют как антагонисты инсулина. На содержание сахара в крови влияет также гормон щитовидной железы тироксин (подобно инсулину). Гормоны передней доли гипофиза — гормон роста (соматотропин), АКТГ и, вероятно, другие факторы повышают уровень сахара в крови, однако механизмы действия этих гормонов в значительной степени являются опосредованными, поскольку они стимулируют мобилизацию из жировой ткани свободных жирньгх кислот, которые являются ингибиторами потребления глюкозы. [c.283]

    АЛЬБУМИН СЫВОРОТОЧНЫЙ (серумальбумин), один из гл. белковых компонентов сыворотки крови. Построен из одной полипептидной цепи (в бычьем Л. с. содержится 581 остаток аминокислот), образующей неск. доменов мол. м. 67 ООО. В организме связывает и переносит жирные к-ты и др. ПАВ, билирубин, аминокислоты, гормоны, лек. в-ва. АЛЬБУМИН ЯИЧНЫЙ (овальбумин), фос4югликопроте-ид яичного белка мол. м. 45 ООО. Известно веек, форм, отличающихся содержанием остатков фосфосерина. Примен. в конд. произ-ве. [c.27]

    Инсулин — белково-пептидный гормон, вырабатываемый островками поджелудочной железы. Является регулятором углеводного обмена в органиа-ме — стимулирует усвоение глюкозы и ее превращение в гликоген, при введении в организм понижает содержание сахара в крови. Молекула инсулина включает не менее 707 атомов и состоит из двух пептидных цепей, включающих 21 и 30 остатков аминокислот, цепи соединены двумя мостиками —8—5—, а один дисульфидный мостик имеется в более короткой цепи. Молекулы инсулина склонны к агрегации (с обраэованц от димеров до гексамеров) в присутствии ионов 2п +. Инсулин — первый белок, строение которого было расшифровано и воспроизведено в лаборатории. Используется для лечения диабета (сахарной болезни), [c.557]

    Ли, Ляйонс и Эванс [419] определяли содержание триптофана в лактогенном гормоне гипофиза по методу Миллон-Лагга найдено 1,3%, а по методу Гопкинс-Шоу — 2,5% аминокислоты. Росс [556] сообщает об аналогичных расхождениях при определении триптофана в вирусе табачной мозаики. Он нашел по методу Миллон-Лагга 2% и по методу Гопкинс-Шоу с глиоксилевой кислотой — 4,5% триптофана, Найт [556] подтверждает эти расхождения, вызванные методикой. [c.131]

    Для иодсодержащих аминокислот, важных для медицинских целей, характерен низкий уровень их нормального содержания в крови, поэтому для их разделения решено было использовать присущую ГХ чувствительность. Клинический интерес представляют шесть аминокислот моноиодтирозин, дииодтирозин, дииод-тиронин, 3,3, 5 - и 3,5,3 -трииодтиронин, а также 3,5,3, 5 -тетра-иодтиронин. Для этих соединений приняты сокращения МИТ, ДИТ, Тг, Тз, обратный Тз и Т4. Аминокислота Т4—-это тироид-ный гормон тироксин, тогда как Тз обладает аналогичной, но еще большей физиологической активностью, а обратный Тз действует как антагонист Тз и Т4. Относительно концентраций этих веществ у больных и у здоровых людей имелись различные мнения [97, 133, 134], что стимулировало поиск новых методов анализа. Присутствие иода в аминокислотах позволяет приме- [c.92]

    Противоинсулярное действие гормонов передней доли гипофиза было показано с особой наглядностью на депанкреатизированных (т. е. лишенных поджелудочной железы) собаках с тяжелой формой диабета. Как оказалось, у таких оперированных животных можно резко снизить концентрацию сахара в крови не только путем введения инсулина, ио и путем удаления гипофиза. Это говорит о том, что у нормальных животных стимулирующее действие гормона передней доли гипофиза на процессы сахарообразования в печени уравновешивается тормозящим действием на эти же процессы инсулина, в результате чего содержание сахара в плазме крови удерживается в пределах нормы. При удалении же поджелудочной железы, т. е. при отсутствии инсулина, образование сахара из гликогена и безазотистых остатков аминокислот в печени, стимулируемое гормонами передней доли гипофиза, происходит с большей интенсивностью и приводит к развитию тяжелой гипергликемии. [c.247]

    Азот — один из основных биогенных элементов, он входит в состав белка и этжм определяется его большая роль в жизни всех организмов. Большая часть А., содержащегося в животном или растительном организме, представлена белковыми веществами. Содержание А. в отдельных белках колеблется от 15 до 19%. А. входит в состав таких жизненно важных веществ, как нуклеиновые кислоты, аминокислоты, хлорофилл, ферменты, гормоны, витамины. Общее содержание А. в листьях растений составляет 3—4% на сухой вес, в семенах злаков — 1,5—3, в семенах бобовых — до [c.15]

    Препараты окситоцина и питрессина содержат соответственно 3,06 и 3,10% серы и 14,3 и 10,5% тирозина [58]. Следует напомнить, что высокое содержание серы и тирозина характерно также и для препаратов инсулина. Гормоны задней доли гипофиза во многом напоминают инсулин и по физико-химическим свойствам. Они также расщепляются протеолитическими ферментами на аминокислоты [59] и инактивируются восстановителями, например цистеином [60]. Однако в отличие от инсулина они реактиви- [c.318]


Смотреть страницы где упоминается термин Гормоны содержание аминокислот: [c.180]    [c.387]    [c.264]    [c.27]    [c.264]    [c.27]    [c.21]    [c.27]    [c.137]    [c.665]    [c.317]    [c.104]    [c.262]    [c.271]    [c.263]    [c.566]    [c.514]    [c.77]    [c.137]    [c.665]    [c.195]    [c.87]    [c.28]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Гормоны



© 2025 chem21.info Реклама на сайте