Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия классификация процессов

    КЛАССИФИКАЦИЯ ПРОЦЕССОВ КОРРОЗИИ [c.7]

    Факторы, определяющие характер и вид коррозии, весьма разнообразны. Основные причины коррозии металлов заложены в их сЕойствах, термодинамической неустойчивости, стремлении переходить из металлического состояния в более энергетически устойчивое— окисное или ионное состояние. Большое многообразие металлов, коррозионных сред и условий их контакта обусловливают различные виды корразии. На рис. 83 приведена обобщенная классификация процессов коррозии металлов, составленная по [c.358]


Рис. 1.1. Классификация процессов коррозии металлов. Рис. 1.1. Классификация процессов коррозии металлов.
    Классификация процессов коррозии [c.458]

    По отношению к бетону могут проявлять агрессивность различные виды природных и сточных вод. Существуют три вида разрушения бетона 1) растворение и выщелачивание составных частей бетона — обменные реакции, сопровождающиеся образованием растворимых соединений 2) реакции обмена, в результате которых образуются в бетоне рыхлые осадки, не проявляющие вяжущих свойств, способные вымываться во внешнюю среду 3) реакции, при которых образуются труднорастворимые соединения, объем которых превышает объем составных частей бетона. Классификация эта условна. На практике встречаются виды коррозии, ь которых проявляются признаки, характерные как для первого, так и для второго вида коррозии. Скорость процесса коррозии и его интенсивность зависят как от состава и качества, бетона, т к и характеристики внешней среды (химический состав, солесодержание воды, коэффициент фильтрации ее через грунт, условия омывания бетона водой и др.). В зависимости от химической природы коррозионного агента различают следующие виды коррозии бетона в воде 1) кислотную 2) углекислотную 3) выщелачивающую 4) магнезиальную 5) сульфатную. [c.106]

    На рис. 1 представлена классификация различных видов коррозии. Жидкостная коррозия, протекающая в растворах-электролитах, относится к электрохимической коррозии. Коррозионные процессы, происходящие в атмос( ре и почве вследствие наличия влаги, тоже носят электрохимический характер, хотя и отличаются рядом особенностей. [c.6]

    Классификация процессов коррозии бетона и железобетона [c.140]

    Определенное влияние на работу транспортных систем оказывает влажность кокса. Наличие влаги в коксе является отрицательным фактором, так как транспортирование кокса, содержащего влагу, связано с перемещением большого балласта, коррозией оборудования и смерзанием его на складах и в железнодорожных вагонах. Поэтому товарные фракции кокса должны содержать возможно меньше влаги. Однако имеется мнение о [249] благоприятном влиянии влаги на процесс прокаливания, если ее содержание не превышает 8-10%. Небольшое присутствие влаги в коксе исключает пыле-ние при дроблении, классификации и транспортировании. [c.197]


    Кроме классификации коррозионных процессов по механизму существуют классификации по другим признакам по характеру разрушения ( сплошная, местная, язвенная, точечная и т.д.), условиям протекания ( контактная, щелевая, фреттинг-коррозия. газовая, атмосферная и т.д.). [c.57]

    Классификация коррозионных процессов и механизм химической и электрохимической коррозии рассмотрен в разделе 1.6. [c.90]

    Цикл включает передачи Производство серной кислоты , Катализ , РастворЬ , Горение и взрывы , Общие свойства металлов , Ряд напряжений металлов , Коррозия металлов , Электролиз , Производство алюминия , Промышленные способы получения металлов , Производство стали , Окислитель-но-восстановительные реакции , Классификация химических реакций , Закономерности протекания химических реакций . Построение и содержание телепередач цикла направлено не только на правильное усвоение учащимися основных понятий, но также на совершенствование методической работы учителя. Принимая передачи, учитель привыкает при демонстрации опытов и объяснении учебного материала обязательно указывать учащимся конкретные свойства вещества, раскрывать взаимосвязь свойств со строением, фиксировать условия протекания химических реакций, определять возможное направление процесса в других условиях. [c.92]

    Согласно классификации, предложенной Н. Д. Томашовым, при применении лакокрасочных покрытий с пассивирующим пигментом коррозионный процесс тормозится за счет увеличения степени анодного контроля. Некоторые изолирующие покрытия могут тормозить коррозию вследствие увеличения омического сопротивления (см. рис. 1.4, в). [c.17]

    В дальнейшем была дана классификация органических ингибиторов коррозии, учитывающая их особенности и особенности коррозионного процесса. Было сформулировано, какими свойствами должны обладать органические соединения для того, чтобы проявлять высокую ингибирующую способность на металлах с различной величиной и природой водородного перенапряжения (например, на железе и цинке), чтобы быть ингибиторами при различных условиях протекания коррозии (например, в условиях водородной или кислородной деполяризации) и т. д. [c.136]

    Одним из главнейших способов классификации коррозии, который позволяет наиболее полно охарактеризовать процессы, протекающие при взаимодействии материалов и коррозионных сред, является классификация по механизму коррозионного процесса. По этому методу классификации коррозию принято делить на следующие виды коррозия химическая, электрохимическая и биохимическая. [c.49]

    В соответствие с принятой классификацией в этой части книги будут рассмотрены основные закономерности протекания коррозионных процессов в природных условиях. Это атмосферная, почвенная и морская коррозия. [c.150]

    Большой объем патентной литературы, многообразие условий применения и классов химических соединений, применяемых в качестве ингибиторов, а также другие трудности не позволили составителю книги избежать некоторых недостатков и просчетов. К числу их следует отнести некоторую схематичность, а иногда и чрезмерный лаконизм в изложении некоторых патентов. Можно отметить определенную недоговоренность в описании технологических процессов применения ингибиторов, что, по-видимому, диктуется соображениями коммерческого порядка. В то же время при описании некоторых патентов имеются излишние подробности общеизвестного характера, повторения. Можно отметить определенные недостатки и в предложенной классификации ингибиторов по условиям применения, которая к тому же не всегда четко выдерживается. Некоторые патенты не имеют прямого отношения к вопросам ингибирования коррозии. Эти недостатки не снижают ценности книги, являющейся в какой-то мере справочником по ингибиторам коррозии,применяемым в зарубежной практике. [c.7]

    В табл. 5 приведена классификация методов защиты от коррозии, сделанная с учетом основного фактора защиты для каждого метода. Как видно из таблицы, для защиты практически применяют как методы, базирующиеся на уменьшении степени термодинамической нестабильности, так и методы, основанные на торможении кинетики катодных и анодных процессов и, в несколько меньшей степени, методы, воздействующие посредством увеличения общего омического сопротивления коррозионной системы. [c.46]

    Классифицировать коррозию принято по механизму условиям протекания процесса и характеру разрушения (рис. 1.1). Кроме этого, коррозию можно рассматривать с учетом специфики использования машин, оборудования и сооружений в промышленности, сельском хозяйстве и на транспорте. В дальнейшем при раскрытии характера процесса и описании основных методов заш,иты от коррозии мы будем придерживаться указанной классификации. [c.14]

    Металлофонд нашей планеты в виде машин, оборудования и сооружений составляет шесть миллиардов тонн [6]. Это лишь 30 % от произведенного за три тысячелетия металла. Остальной металл исчез из обращения, причем основной причиной были процессы коррозии. Человечество непрерывно ведет борьбу за сохранение металлоконструкций. Однако потери от коррозии уменьшаются мало. Ущерб, в результате отказов техники, аварий и катастроф несравним с ущербом, связанным с прямыми потерями металла. В значительной степени это относится к сложным конструкциям машин и оборудования. Выше приведенная классификация процессов коррозии показывает, насколько многообразно проявление крррозионного разрушения металлов. [c.18]


    Ввиду большого многообразия металлов, коррози-овиых сред и условий их контакта виды коррозии разнообразны. На рис. 13 приводится классификация процессов коррозии, из которой следует, что виды коррозии можно разделить на четыре группы 1) по [c.55]

    Общая характеристика процессов коррозии (457), 2 Классификация процессов коррозии (458), 3. Условия воз никновения коррозионного процесса (459), 4, Основы кине тической теории коррозии и ее приложение к коррозии иде ально чистых металлов (463), 5. Коррозия технических [c.508]

    Классификация процессов коррозии. Характер изменения поверхности металла в ходе коррозии зависит от химического окружения. В соответствии с самой простой системой классификации различают влажную и сухую коррозию первая происходит в присутствии воды, вторая - в ее отсутствие. Наиболее распространена цлажная коррозия, поскольку почти в любом химическом окружении присут- [c.177]

    Классификация реакций. Как уже было объяснено на стр. 284, коррозионные явления удобно разделить на два класса Б зависимости от того, регулируется (контролируется) лн скорость коррозии катодным процессом или анодным, хотя очень распространены и промежуточные случаи (смешанный контроль). Действие кислоты на цинк представляет пример катодного контроля этот вид коррозии сильно ускоряется в присутствии примесей, способствующих катодной реакции — удалению водорода. Коррозия железа в кислотах контролируется частично катодно, однако, в этом случае Хор установил, что анодная реакция оказывает также значительное влияние. Это является следствием естественного медленного перехода железа из металлической фазы в раствор (см. стр. 451), а не относится за счет присутствия защитной пленки на металле. Рэм установила, что скорости коррозии в серной кислоте, насыщенной закисной сернокислой солью железа, и в кислоте, вначале свободной от этой соли, практически одинаковы, хотя насыщение сернокислой закисной солью железа должно было бы благоприятствовать образованию пленки. С другой стороны, коррозия свинца в серной кислоте замедляется вследствие образования анодной пленки. Очевидно, это также справедливо и [c.350]

    Факторы, определяющие характер и вид коррозии, весьма разнообразны. Основные причины коррозии металлов заложены в их свойствах термодинамической неустойчивости, стремлении переходить из металлического состояния в более энергетически устойчивое — оксидное или ионное состояние. Большое многообразие металлов, коррозионных сред и условий их контакта обусловливают различные виды коррозии. На рис, 23,2 приведена обобщенная классификация различных вндов коррозии металлов в зависимости от коррозионной среды характера разрушения условий эксплуатации и механизма коррозионного процесса. Первая группа не нуждается в комментариях о четвертой было сказано раньше. [c.280]

    Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Г.Дэви и М. Фарадея, установивших закон электролиза. Так, М. Фарадей предложил ва кнейшее для дальнейшего развития электрохимической теории коррозии соотношение между массой аноднорастворяющегося металла и количеством протекающего электричества, а также высказал (проверено Г. Дэви) предположение о пленочном механизме пассивности железа и электрохимической сущности процессов растворения металлов. В 1830 г. швейцарский физикохимик О. Де да Рив ч ко сформулировал представления об электрохимическом характере коррозии (он объяснил растворение цинка в кислоте действием микрогальванических элементов). Русский ученый H.H. Бекетов (1865 г.) исследовал явление вытеснения из раствора одних металлов другими, а Д.И. Менделеев (1869 г.) предложил периодический закон элементов, который имеет очень важное значение для оценки и классификации коррозионных свойств различных металлов. Важен вклад шведского физикохимика С. Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации и немецкого физикохимика В. Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов. [c.4]

    Классификация К. м. определяется конкретньт1и особенностями среды и условиями протекания процесса (подводом окислителя, агрегатным состоянием и отводом продуктов коррозии, возможностью пассивации металла и др.). Обычно выделяют К. м. в природных среда -атмосферную коррозию, морскую коррозию, подземную коррозию, био-коррозию нередко особо рассматривают К. м. в пресных водах (речных и озерных), геотермальных, пластовых, шахтных и др Еще более многообразны виды К. м. в техн. средах, различают К. м. в к-тах (неокислительных и окислительных), щелочах, орг. средах (напр., смазочноохлаждающих жидкостях, маслах, пищ. продуктах и др.), бетоне, расплавах солсй, оборотных и сточных водах и др. По условиям протекания наряду с контактной и щелевой К. м. выделяют коррозию по ватерлинии, коррозию в зонах обрызгивания, переменного смачивания, конденсации кислых паров радиационную К. м., коррозию при теплопередаче, коррозию блуждающими токами и др. Особую группу образуют коррозиоиномех. разрушения, в к-рую входят помимо коррозионного растрескивания и коррозионной усталости фреттинг-коррозия, водородное охрупчивание, эрозионная коррозия (в пульпах и суспензиях с истирающими твердыми частицами), кавитационная коррозия (при одноврем. воздействии агрессивной среды и кавитации). В общем случае воздействие агрессивной среды и мех. факторов на разрушение неаддитивно. Напр., при эрозионной К. м, потери металла вследствие разрушения защитной пленки м, б. намного больше суммы потерь от эрозии и К. м. по отдельности. [c.482]

    Систематизация данных об изменении интенсивности отказов элементов химико-технологической системы в процессе эксплуатации позволяет установить определенную классификацию периодов отказов элементов (рис. 10.6). Для зоны I характерна высокая интенсивность отказов, коррозионная агрессивность технологических сред в этот период очень высока. В период пуска и испытаний (зона I) возможны серьезны е коррозионные повреждения аппаратуры и коммуникаций, в частности из-за неправильной методики их организации. Так, в [ПО] описана интенсивная коррозия трубопроводов из нержавеющей стали 12Х18Н10Т в период испытаний под действием речной воды с повышенным содержанием солей (до [c.188]

    Для классификации стекол важна их химическая стойкость при повышенных температурах и давлениях (испытания в автоклавах) 8. Мори и Боуэн описали коррозионное действие воды на оптическое стекло при 30 и 550°С. Процесс гидротермальной коррозии в общем соответство1вал результатам испытания по Мили-усу, использовавшему в качестве индикатора иод-эозин. Стекла с большим иодэозиновым показателем также более чувствительны и более сильно подвержены коррозии от действия водяных паров при высоком давлении. При этом образуются кристаллические Р-кварц, дисиликат бария, моносиликат свинца и другие неподдаю-щиеся надежной идентификации кристаллические фазы. [c.901]


Смотреть страницы где упоминается термин Коррозия классификация процессов: [c.12]    [c.12]    [c.12]    [c.6]    [c.78]    [c.59]    [c.495]   
Теоретическая электрохимия Издание 3 (1975) -- [ c.517 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия классификация

Процессы коррозии



© 2025 chem21.info Реклама на сайте