Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предсказание возможности и направления процесса

    Предсказание возможности и направления процесса. Все процессы, в которых один вид энергии преобразуется в другой, строго подчиняются первому закону термодинамики. Однако этот закон, характеризуя превращение количественно и качественно, не дает указаний, возможен ли данный процесс вообще к, если возможен, то с какой полнотой он протекает. [c.89]

    Возможно, наиболее часто в роли лимитирующего биогенного элемента в пресных водоемах выступает фосфор (Р) [318, 384]. За ним следует азот (Ы) (см. обсуждение ниже). Таким образом, уровень концентрации фосфора в воде может иметь критически важное значение в вопросе предсказания вспышки цветения фитопланктона. В связи с этим было осуществлено большое количество исследовательских работ, направленных на выяснение биологических процессов потребления и усвоения фосфора и создание соответствующих математических моделей. Фосфор присутствует в ткани клеток фитопланктона, в составе многих соединений, наиболее важным из которых является ортофосфат (существующий в виде НгРО- при 3 < pH 7 или НРО - при 8 pH < 12). Фосфатные группы являются основными структурными элементами нуклеиновых кислот. Входя в состав легких нуклеотидов, фосфор участвует в энергетических и анаболических процессах в растительных клетках [581]. [c.200]


    Изучение термодинамических и кинетических закономерностей процессов, происходящих в нефтяных дисперсных системах, необходимо для предсказания возможных направлений превращений в рассматриваемых системах в реальных условиях их существования, определения областей значений температур, давлений, концентраций активирующих добавок и других факторов, позволяющих оптимально осуществлять технологические процессы. Термодинамические и кинетические характеристики нефтяных дисперсных систем являются своеобразной мерой самопроизвольности происходящих в них превращений. [c.137]

    В качестве одного из основных критериев классификации систем используется положение области аморфного расслоения относительно кривых состав — температура текучести и состав — температура кристаллизации (плавления кристаллитов). Введение этой характеристики значительно облегчает предсказание направления процесса установления равновесия для неравновесных систем и позволяет оценивать возможность проявления той или иной физической формы распада системы на фазы. [c.85]

    При постоянных температуре и давлении самопроизвольное течение термохимического процесса возможно только в направлении, которому отвечает уменьшение Д2, т. е. должно выполняться условие ЛZ < 0. Из выражения (76) следует, что для термодинамических расчетов необходимо знать температуру образца в электроде. Правильное измерение температуры пробы является нелегкой задачей, особенно вследствие неоднородности температуры в пределах электрода. Кроме того, условия, при которых находится проба, нельзя считать стационарными как температура электрода, так и состав пробы быстро меняются. Все это ограничивает использование термодинамических расчетов для предсказания возможности реакций в электроде при добавлении к пробе химически активных веществ. Тем не менее, такие расчеты за последнее время в той или иной мере успешно применялись в ряде исследований [591, 592, 460]. [c.144]

    С учетом полученного соотношения между максимальной работой и внутренней энергией системы мы можем сделать следующее заключение. Процессы протекают само-произвольно в том направлении, в котором изменение свободной энергии идет в сторону ее уменьшения (система производит внешнюю работу). Это одно из основополагающих определений термодинамики, оно позволяет путем расчетов заранее установить, в каком направлении в заданных условиях пойдет самопроизвольный процесс в системе, состоящей из данных веществ. Точное предсказание направления процесса позволяет рассчитать максимально возможную при определенных условиях работу. [c.113]


    Данные по механизму, кинетике и катализу химических реакций имеют большое теоретическое и практическое значение. Первое заключается в раскрытии объективных законов, управляющих взаимодействием веществ, в установлении количественных связей между строением реагентов и природой окружающей среды на скорость и направление химических реакций. Практическое значение механизма реакций определяется возможностью предсказания и направленного поиска лучших путей осуществления процесса, выбора способов его ускорения, катализаторов и т. д. Кроме того, механизм реакции теснейшим образом связан с кинетикой, количественно описывающей зависимость скорости процесса от его параметров и лежащей в основе создания математической модели реакции, выбора оптимальных условий ее осуществления, количественного расчета процесса и химических реакторов. [c.9]

    В термодинамике есть два главных закона. Первый — это закон сохранения энергии. Он определяет, возможен ли процесс, достаточно ли энергетических ресурсов, чтобы процесс произошел. Если пет, то нет. А вот если да, то и возникает вопрос о направлении процесса. Возможность предсказания направления процесса составляет основное содержание второго закона термодинамики. [c.14]

    Задачей настоящей, третьей части данного учебника является демонстрация возможности активного использования приемов термодинамики неравновесных процессов для анализа функционирующих химически реакционноспособных систем, в частности, для предсказания направления эволюции химически реакционной системы и скорости некоторых брутто-превращений даже при недостаточном знании конкретного механизма происходящих в системе процессов. [c.291]

    Для приближенной оценки направления протекания реакции и для предсказания термодинамической возможности ее протекания в данном направлении можно воспользоваться значениями стандартной энергии Гиббса (AG ), для большинства веществ приводимыми в справочниках. Для органических реакций и нефтехимических процессов можно считать, что при AG < < -40 кДж/моль реакция термодинамически возможна, а если AGt > 40 кДж/моль - реакция термодинамически запрещена. Если AG находится в промежутке между указанными значениями, необходимо сделать точный расчет по уравнению изотермы химической реакции. [c.84]

    В настоящее время нет данных о кинетике этого процесса, так как не ясно, в какой мере направление раскрытия цикла происходит также по иному механизму (см. формулу XXI). Правило скоростей реакций (первичный > вторичный > третичный) не является достаточно общим, чтобы давать возможность предсказаний при подобного рода реакциях. [c.29]

    Рассматривая относительные фазы, а следовательно, и общую симметрию участвующих орбиталей, Вудвард и Гофман смогли сформулировать в 1965 г. ряд правил. Они не только объяснили протекание перициклических реакций, которые были к тому времени известны, но и точно предсказали направление многих предполагаемых реакций. Эти предсказания были связаны с возможностью термического или фотохимического индуцирования реакции и подробной стереохимией, которая должна в этом случае наблюдаться. Их заслуга тем более велика, что некоторые предсказания (после оказавшиеся верными) были сделаны в то время, когда они казались совершенно невероятными. Чтобы сделать такие предсказания, надо было рассмотреть относительные фазы, т. е. симметрию, всех орбиталей, участвующих в процессе превращения реагирующих веществ в продукты. Вместе с тем, оказалось возможным получить достаточное представление о направлении реакций и гораздо более просто, путем применения концепции граничных орбиталей. В рамках этого подхода принимают, что электроны высшей занятой молекулярной орбитали (ВЗМО) реагирующего вещества аналогичны внешним (валентным) электронам атома. Реакция в этом случае включает перекрывание ВЗМО одного реагента (потенциальный донор электронов) с низшей свободной молекулярной орбиталью (НСМО) другого реагента (потенциальный акцептор электронов). В тех случаях, как, например, в электроциклических реакциях, когда в реакции участвует только одна частица, с использованием этого подхода должна быть рассмотрена только НСМО. Ниже анализируется ряд перициклических реакций. [c.386]

    С возникновением теории химического строения органическая химия вышла из лабиринта типических формул были показаны пути к познанию внутреннего строения молекул появилась теоретическая основа для понимания химических процессов, для предсказания новых путей синтеза органических соединений. С самого момента своего зоз-никновения теория химического строения дала возможность химикам проводить экспериментальные исследования направленно, целеустремленно. [c.7]

    Ввиду того, что методы выделения и очистки веществ, основанные на распределении ионов, молекул или ионных ас-социатов в двухфазных системах жидкость—жидкость, находят все более широкое применение в технологии разделения близких но свойствам элементов, радиохимической и редко-металлической промышленности, аналитической химии и др., возникает настоятельная необходимость в отыскании наиболее общих закономерностей экстракции, с тем чтобы иметь возможность предсказать направление и количественный выход процесса при изменении его параметров. С этой точки зрения экстракция относится к числу наиболее сложных разделов физической химии, поскольку ее описание невозможно без привлечения теории растворов, лишь частично объясняющей все многообразие взаимодействий, имеющих место в гетерогенных экстракционных системах. Знакомство с учебной, обзорной и монографической литературой по экстракции (см. 11]. глава I см. также [2—8]) показывает недостаточность теории растворов в ее классической интерпретации, а также чисто химических представлений для количественного описания экстракционных равновесий и предсказания основных параметров экстракции, в частности для предсказания коэффициентов распределения. [c.5]


    Задачи практики требуют сведений о возможности протекания химических реакций, о полноте их завершения, т. е. о выходе продуктов. Такие задачи связаны с предсказанием направления процессов, и они не могут быть решены на основе первого закона термодинамики. Простейший пример смесь газов — неон и аргон — находится в одном сосуде и представляет собой изолированную систему. Возможно ли самопроизвольное разделение этих газов Так как внутренняя энергия системы в целом не изменяется, то этот процесс не противоречил бы первому закону термодинамики. Подобным же образом этот закон не позволяет предсказать направление реакции СаСОз (т)=СаО (т)4-С02 (г) при тех или иных параметрах состояния (например, р и 7). Он ограничивается лишь утверждением, что слева направо реакция [c.18]

    Одно из главных положений теории пространственной организации белков состоит в предположении о наличии в нативных конформациях макромолекул согласованности ближних, средних и дальних взаимодействий (см. часть II). На этом утверждении строится поэтапный подход к априорному предсказанию трехмерных структур природных полипептидов, поскольку только при гармонии в белковой глобуле всех внутриостаточных и межостаточных невалентных взаимодействий атомов становится возможным и оправданным разделение конформационной проблемы белка на ряд связанных между собой менее громоздких проблем и их последовательное решение. Это же положение отражает суть термодинамической бифуркационной теории свертывания белковой цепи, объясняющей возможность, направленность и предел протекания по беспорядочно-поисковому механизму спонтанного, нелинейного неравновесного процесса сборки высокоорганизованной пространственной структуры из флуктуирующей полипептидной цепи. [c.413]

    Если программа дает результаты, согласующиеся с имеющимися данными, ее можно использовать для предсказания и оптимизации характеристик новых конструкций, внося соответствующие, изменения в уравнения. Например, если капли имеют новые характеристики испарения, требуется изменить только уравнение массообдоена. Кроме того, степень неопределенности в расчете характеристик сушилки, вызванную неточностью описания процесса испарения новых капель, легко оценить с помощью повторных расчетов, в которых эта неточность учитывается путем использования уравнения массообмена в соответствующих предельных формах. Сравнение результатов, отличающихся вследствие этой неопределенности, подсказывает наилучшее направление дальнейших работ. Оно может заключаться в проведении более точных экспериментов по исследованию характеристик массообмена распыленной струи или в том, чтобы предложить заказчику проект с более умеренными показателями. Принимаемое решение должно быть, вероятно, таким, чтобы обеспечивать наименьшие затраты. С другой стороны, возможность будущих заказов на аналогичные установки может привести к принятию противоположного решения. Важным фактором является то, что проектирование с помощью вычислительных машин позволяет органу управления быстро получать четкую и недорогую информацию, касающуюся технических и стоимостных характеристик установки. [c.372]

    Другое направление теоретических работ — описание и предсказание экстракции металлов с позиций координационной химии. Ранние исследования гидратации хелатов в зависимости от координационного числа и заряда центрального атома, а также дептатности реагента получили развитие при исследовании других систем. Показана возможность экстракции промежуточных, гидратированных комплексов при введении донорноактивных соеди-нений-добавок. Так, в качестве экстрагентов предложены смеси катионного и нейтрального реагентов, например триоктиламина и трибутилфосфата. Первый образует ионные ассоциаты с анионными комплексами металлов, второй элиминирует негативное влияние их гидратации. Проще говоря, вытесняет воду из внутренней координационной сферы металла-комплексообразовате-ля. Продуктивно использован при описании и априорной оценке экстракционных процессов принцип жестких и мягких кислот и оснований. [c.7]

    Ключом к пониманию и предсказанию направления реакции является исследование влияния структуры молекул на механизм, термодинамические и кинетические параметры процесса пиролиза. Совокупная информация об этих трех основых категориях очень ограниченна и относится главным образом к отдельньш представителям первой группы полимеров. Можно показать, что лишь комплексное изучение указанных факторов дает возможность предсказывать поведение полимера в условиях высоких температур. [c.162]


Смотреть страницы где упоминается термин Предсказание возможности и направления процесса: [c.16]    [c.16]    [c.443]    [c.135]    [c.163]    [c.135]    [c.159]    [c.312]    [c.159]    [c.131]    [c.272]    [c.108]    [c.38]    [c.279]    [c.118]   
Смотреть главы в:

Краткий курс физической химии -> Предсказание возможности и направления процесса

Краткий курс физической химии Издание 2 -> Предсказание возможности и направления процесса




ПОИСК





Смотрите так же термины и статьи:

Процесс направленность

Процессы направление



© 2025 chem21.info Реклама на сайте