Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия протекания химической коррозии

    УСЛОВИЯ ПРОТЕКАНИЯ ХИМИЧЕСКОЙ КОРРОЗИИ [c.20]

    Принципиальная возможность или невозможность самопроизвольного протекания процесса электрохимической коррозии металла, так же как и химической коррозии, определяется знаком изменения свободной энергии процесса. Возможно самопроизвольное протекание только коррозионных процессов, которое сопровождается убылью изобарно-изотермического потенциала, т. е. AGr < 0. При электрохимической коррозии металлов для расчетов более удобно пользоваться электрохимическими данными — электродными потенциалами. Термодинамически возможен процесс электрохимической коррозии, для которого соблюдается условие [c.181]


    Явление коррозионного растрескивания латуней также связано с большим различием в химической стойкости атомов цинка и меди в твердом растворе металлического сплава. При наличии в латуни внутренних поверхностей, более богатых атомами цинка, например, по границам зерен, двойникам, плоскостям скольжения (что более вероятно при повышенном содержании цинка в сплаве) в условиях, обеспечивающих возможность протекания коррозии по этим поверхностям в глубину, развивается коррозионное растрескивание. Условия возможности проникновения коррозии [c.285]

    Химическая коррозия характерна для сред, не проводящих электрический ток. При химической коррозии происходит прямое гетерогенное взаимодействие металла с окислителем окружающей среды. По условиям протекания коррозионного процесса различают а) газовую коррозию — в газах и парах без конденсации влаги на поверхности металла, обычно при высоких температурах. Примером газовой коррозии может служить окисление металла кислородом воздуха при высоких температурах б) коррозию в неэлектролитах — агрессивных органических, жидкостях, таких, как сернистая нефть и др. [c.207]

    Цикл включает передачи Производство серной кислоты , Катализ , РастворЬ , Горение и взрывы , Общие свойства металлов , Ряд напряжений металлов , Коррозия металлов , Электролиз , Производство алюминия , Промышленные способы получения металлов , Производство стали , Окислитель-но-восстановительные реакции , Классификация химических реакций , Закономерности протекания химических реакций . Построение и содержание телепередач цикла направлено не только на правильное усвоение учащимися основных понятий, но также на совершенствование методической работы учителя. Принимая передачи, учитель привыкает при демонстрации опытов и объяснении учебного материала обязательно указывать учащимся конкретные свойства вещества, раскрывать взаимосвязь свойств со строением, фиксировать условия протекания химических реакций, определять возможное направление процесса в других условиях. [c.92]

    Химическая коррозия протекает в среде жидких диэлектриков (неэлектролитов) или газов (газовая коррозия), нагретых до высоких температур, при отсутствии влаги на поверхности металла. Чаще этот процесс идет в виде окислительно-восстановительных химических реакций. К жидким неэлектролитам можно отнести многие органические (бензол, толуол, бензин, керосин, мазут и т. п.) и неорганические (жидкий бром, расплавленная сера, жидкий фтористый водород и т. п.) жидкости, которые не обладают электропроводимостью и, следовательно, исключают условия для протекания электрохимических реакций. [c.45]


    Например, на алюминии быстро возникает прочная сплошная окисная пленка, прекращающая химическую коррозию, а окисная пленка на железе возникает медленнее, защитной роли почти не играет, и, будучи рыхлой и гигроскопичной, даже облегчает условия протекания химической коррозии. [c.65]

    Условия протекания химической коррозии и состав получаемых на металле пленок могут быть весьма различными. Далее при обычной температуре на серебре или меди в парах или растворах иода возникает пленка иодида соответствующего металла. При действии паров серы или сернистых соединений на железо растет пленка сернистого железа РеЗ. [c.37]

    Условия протекания химической коррозии и состав получаемых на металле продуктов коррозии могут быть весьма различными. Например, при обычной температуре на серебре или меди в парах или растворах иода возникает пленка иодида соответствующего металла, при действии паров серы или сернистых соединений на железе растет пленка сернистого железа РеЗ. Однако наибольшее значение в практических условиях имеет химическая коррозия при повышенных температурах на границе металла с газовой фазой, так называемая газовая коррозия. Продуктами газовой коррозии обычно являются окислы металлов, за исключением особых случаев эксплуатации металлических изделий, когда могут получаться и другие соединения, например сернистые металлы. По этой причине разбираемые ниже общие закономерности протекания процессов химической коррозии мы чаще всего иллюстрируем на примера. процессов окисления с образованием кислородных соединений металлов. [c.41]

    Газовая коррозия является частным случаем химической коррозии и возможна только в условиях, исключающих протекание электрохимических процессов. Характерной особенностью газовой коррозии является отсутствие на поверхности металла влаги. Поэтому в большинстве случаев речь идет о коррозии при повышенной температуре, при которой вода находится в газовой фазе. Однако, исходя из определения, можно представить себе газовую коррозию и при комнатной температуре, но в условиях высокой степени сухости, естественной или создаваемой искусственно. Так, при осушении силикагелем до точки росы —30° С влагоемкость воздуха составит 0,333 г/лг . При + 20°С это соответствует влажности воздуха всего лишь 2%. В таких условиях протекание электрохимической коррозии практически исключается. В промышленности случаи газовой коррозии встречаются достаточно часто —от разрушения деталей нагревательных печей до коррозии металла в процессе его термической обработки. [c.44]

    Взаимодействие металла с растворами, способными проводить электрический ток, происходит не только при непосредственном погружении металлического изделия в раствор электролита, но даже в атмосферных условиях, так как на его поверхности образуется тонкая пленка влаги. В этом тонком слое воды растворяются газы, содержащиеся в атмосфере, и таким образом создаются условия взаимодействия металла с раствором электролита. В этом случае коррозия принципиально отличается — как по характеру протекания, так и по продуктам реакции — от химической коррозии. Электрохимическая кор- [c.109]

    Первые два члена правой части уравнения представляют химическую составляющую фреттинг-коррозии. Эта величина уменьшается с повышением частоты /, так как при этом сокращается время протекания химической реакции (или адсорбции) за один цикл. Последний член уравнения представляет механический фактор, не зависящий от частоты, но пропорциональный смещению и нагрузке. В зависимости от условий эксперимента, разрушение может в большей степени быть обусловлено как первым, так и вторым фактором. В атмосфере азота действует только механический фактор, в результате остается порошок металлического железа и не зависит от частоты /. [c.168]

    Коррозия внутренней поверхности металлического оборудования может быть приостановлена или замедлена добавлением в транспортируемую или хранимую среду различных химических веществ (нейтрализаторов и ингибиторов коррозии). Следует отметить, что нейтрализаторы в настоящее время практически не применяются, а ингибиторы коррозии используются лишь при наличии подробных сведений о виде коррозии и условиях протекания коррозионного процесса. Для существующих установок в настоящее время разработан ряд методов введения ингибитора, обеспечивающих проникновение его в самые отдаленные зоны установки. [c.187]

    В задачу контроля данного вида коррозии входят определение места, интенсивности и конкретных условий протекания коррозии проверка агрессивности мощных растворов, которая определяет ход развития стояночной коррозии после кислотно-химических промывок оценка защитных свойств консервантов. К ним следует отнести водные растворы ингибиторов пленкообразующего действия и восстановителей, защитные атмосферы. [c.109]


    При подборе для данной системы эффективных ингибиторов и разработки методики их испытания необходимо изучить химический состав среды, pH, температуру, скорость потока и другие условия протекания коррозии в аппаратуре. С этой целью был сделан анализ условий работы конденсационно-холодильного узла АВТ и выявлены концентрации растворов хлористого водорода и сероводорода. [c.182]

    Но именно в печах этих установок, включая и указанные зоны, скорость износа значительно меньше, чем в печах установок термического крекинга. Поэтому можпо считать, что условий для протекания электролитической коррозии в печах технологических установок нет и нет оснований предполагать, что наряду с химической коррозией печных труб имеет место электролитическая коррозия. Это доказывается также опытом эксплуатации сварных труб в печах. [c.44]

    Алюминий и особенно его сплавы широко используются в промышленности. В химической промышленности алюминиевые сплавы применяют для изготовления деталей теплообменной аппаратуры, в том числе эксплуатирующейся в контакте с морской водой. Особенностью электрохимического поведения алюминия является его коррозионная стойкость лишь в относительно узком интервале pH. На рис. 1.7 в координатах потенциал — pH представлена диаграмма, показывающая условия протекания коррозии и границы коррозионной стойкости алюминия в морской воде. Отсутствие коррозионного процесса характеризуется на диаграмме областью коррозионной стойкости (область инертности) и областью пассивности. В области пассивности на поверхности алюминия имеется барьерная пленка состава АЬОз-НгО. [c.28]

    Для мыльных смазок следует учитывать возможность протекания на поверхности металла обменных химических реакций. Они могут осуществляться в условиях граничного трения при наличии на металле избытка электронов и ионов, под воздействием электролита, т. е., как правило, в условиях смешанной электрохимической и химической коррозии. Отводить ионы и усиливать химическую и электрохимическую коррозии могут присутствующие в смазке свободные кислоты и другие коррозионно-агрессивные вещества, образующиеся как при производстве, так и при применении смазок. [c.323]

    В условиях образования легко возгоняющихся продуктов коррозии или возникновения очень рыхлых и полностью незащитных пленок скорость газовой коррозии будет определяться скоростью протекания химической реакции металла со средой или скоростью процесса, нарушающего сплошность пленки окисла возгонкой, растрескиванием или скоростью перехода первичной сплошной окисной пленки в рыхлую. В этих случаях будет наблюдаться примерно постоянная скорость окисления во времени (линейный закон окисления). [c.36]

    В предыдущих главах говорилось об антиокислительных и противокоррозионных присадках, которые при добавлении к смазочным маслам предотвращают коррозионное действие продуктов превращения масел (химическую коррозию) на детали двигателя в процессе его работы. Однако условия возникновения и развития коррозионных процессов в течение периода консервации двигателя и во время перерывов в работе сильно отличаются от тех, которые существуют в работающих двигателях. В этом случае меняется не только скорость коррозионных процессов, но и механизм их протекания — во время консервации и при перерывах в работе двигатели подвергаются прежде всего действию влажной среды, вследствие чего возникает атмосферная коррозия. Во время работы двигателей роль ее, наоборот, незначительна из-за достаточно высокой температуры деталей. [c.174]

    В химической промышленности наиболее часто встречается электрохимическая коррозия, которая в зависимости от характера агрессивной среды и условий протекания может быть кислотной, щелочной или солевой (в соответствующих водных растворах) атмосферной или почвенной (от воздействия на металлы загрязненного воздуха или почвы) контактной, вызываемая контактом двух различных металлов коррозия внешним электрическим током, наблюдаемая у подземных сооружений. [c.159]

    Характерной особенностью химической коррозии является образование продуктов коррозии непосредственно в месте взаимодействия металла с агрессивной средой. По условиям протекания [c.160]

    Химическая коррозия происходит главным образом при непосредственном взаимодействии металла с агрессивными веществами окружающей среды. При химической коррозии продукты коррозии образуются на том же участке поверхности металла, который вступает в реакцию. В результате соприкосновения металла с кислородом или со средами, содержащими кислород, на поверхности металла возникает пленка окислов. Рост толщины этой пленки обычно ограничивается рядом факторов. Для протекания коррозионного процесса необходимы условия, обеспечивающие дальнейшее окисление металла после образования пленки. В некоторых случаях толщина такой пленки быстро увеличивается и металл значительно разрушается. [c.7]

    КЛАССИФИКАЦИЯ И ОБЩ.АЯ Х.АРАКТЕРИСТИК.А МЕТОЛОЕ ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ Коррозионная стойкость не является абсолютной характеристикой только металла или другого конструкционного материала, а в равной степени зависит от коррозионной среды. Один и тот же материал, обладая высокой коррозионной и химической стойкостью в одних средах, может оказаться совершенно нэпригодным в других. Большое разнообразие видов коррозии, как по механизму, так и по условиям протекания и характеру коррозионного разрушения, требует использования различных методов исследования коррозионной стойкости металлов и сплавов. Главным здесь является по возможности более полная имитация условий их эксплуатации. [c.5]

    Таким образом, в общем случае, термодинамически возможный коррозионный процесс способен осуществляться одновременно тремя параллельными путями (механизмами) 1) химическим 2) гомогенно-электрохимическим 3) гетерогенно-электрохимическим. Однако, в некоторых случаях для упрощения расчетов вполне допустимо условно относить общий эффект коррозии к какому-нибудь одному преобладающему механизму. В случае электропроводной коррозионной среды (электролита) как правило, значительно чаще наблюдается электрохимический механизм и, за исключением особых случаев, его можно считать доминирующим. Какой при этом вариант будет преобладать — гетерогенный или гомогенный электрохимический — зависит от условий. Повидимому, преимущественное протекание процесса коррозии по гомогенно-электрохимическому механизму следует относить только к случаю коррозии особо чистых металлов, не имеющих структурных неоднородностей на поверхности, например, к жидким. В обычных случаях коррозии конструкционных металлов и сплавов надо предполагать преимущественное развитие процесса по гетерогенно-электрохимическому механизму. На это указывает обычно наблюдаемый макро- или микронеравномерный характер коррозионных разрушений или избирательное растворение компонентов сплава. [c.25]

    Для оценки ПРОТИВОКОРРОЗИОННЫХ свойств рабочих и рабоче-консервационных моторных масел применяют методы, моделирующие условия преимущественного протекания химической коррозии. Противокоррозионные свойства масел и в СССР, и за рубежом оценивают как лабораторными, так и моторными методами. При исследовании противокоррозионных свойств масел лабораторными методами применяют в основном методы стандартные [54,55]. По ГОСТ 5162-49 определяется коррозионность (по методу Пинкевича) моторных масел. В нагретое до 140°С масло периодически погружаются пластинки из свинца или его сплавов и через 50 ч испытания определяется изменение веса пластинок. По ГОСТ 8245-56 определяется потенциальная коррозионность моторных масел (по методу НАМИ). Испытание проводится в приборе М-2, на свинцовой пластинке, периодически погружаемой в нагретое до 140°С масло в течение 10 ч. Оценивается убыль веса свинцовой пластинки. По ГОСТ 13517-68 определяется коррозионность масел в том же приборе в присутствии катализатора - нафтената меди в течение 25 ч. По ГОСТ 13300-67 определяются корроаяонныв 2 ) [c.24]

    Несмотря на большое число исследований механизм коррозии металлов до сих пор окончательно не выяснен. Коррозия железа в присутствии воды и атмосферного кислорода может идти как путем обычных химических реакций окисления, так и в результате электрохимических сопряженных процессов анодного растворения металла и катодной кислородной или водородной деполяризации (1, 2]. Как показал А. Н. Фрумкин [2, 3], электрохимическая коррозия не обязательно связана с участием локальных элементов, а может происходить также на однородных поверхностях. В зависимости от металла, состава и pH раствора и условий протекания процесса коррозия осуществляется по трем путям. В электрохимической коррозии можно отличить кислородную деполяризацию от водородной по составу выделяющихся газообразных продуктов, как это, например, было сделано в ис- следовании [4]. Труднее отличать электрохимическую коррозию с кислородной деполяризацией от чисто химической, так как стехиометрическое уравнение суммарной реакции для обеих одинаково, хотя они имеют разные промежуточные ступени. Различие между ними становится доступным прямому наблюдению при применении тяжелого изотопа кислорода как изотопного индикатора. Электрохимический механизм с кислородной деполяризацией включает стадию образования гидроксильного иона (или воды) с участием атмосферного кислорода, которая, если не рассматривать промежуточных ступеней, может быть выраясена общим уравнением [c.222]

    Коррознонностойкие (нержавеющие) стали эксплуатируют преиму-цественно в условиях электрохимической коррозии (хотя в принципе 1е исключено и протекание химической коррозии). [c.259]

    Под коррозией понимают физико-химическое или химическое взаимодействие между металлом и средой, приводящее к ухудшению функциональных свойств металла, среды или включающей их технической системы. Химическое взаимодействие определяет, главным образом, химическую коррозию, характеризующуюся непосредственным взаимодействием реагирующих частиц металла и среды без возникновения электрического тока. Физикохимическое взаимодействие характерно для электрохимической и механо-химической коррозии, сопровождающейся возникновением электрического тока (ток коррозии). При механо-химической коррозии (коррозионно-меха-ническом изнашивании) электрохимические процессы накладываются на механическое взаимодействие трение, напряжение, циклическое давление и др. В зависимости от вида коррозийной среды и условий протекания коррозионного процесса различают около 40 видов коррозии атмосферная, газовая, подземная, биокоррозия, контактная, коррозия при трении, щелевая и др. [c.365]

    Ингибиторы коррозии металлов. Применение ингибиторов — один из эффективных способов борьбы с коррозией металлов в различных агрессивных средах (в атмосферных, в морской воде, в охлаждающих жидкостях и солевых растворах, в окислительных условиях и т.д.). Ингибиторы — это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от лат. inhibere, что означает сдерживать, останавливать. Ингибиторы взаимодействуют с промежуточными продуктами реакции или с активными центрами, на которых протекают химические превращения. Они весьма специфичны для каждой группы химических реакций. Коррозия металлов — это лишь один из типов химических реакций, которые поддаются действию ингибиторов. По современным представлениям защитное действие ингибиторов связано с их адсорбцией на поверхности металлов и торможением анодных и катодных процессов. [c.150]

    Коррозия является физико-химическим процессом и закономерности ее протекания определяются общими законами термодинамики и 1синетики гетерогенных систем. Различают внутренние и внешние факторы коррозии. Внутренние факторы характеризуют влияние на вид и скорость коррозии природы металла (состав, структура и т.д.). Внешние факторы определяют влияние состава коррозионной среды и условий протекания коррозии (температура, давление и т.д.). [c.13]

    Избыток свободной углекислоты по сравнению с необходимым количеством равновесной углекислоты называется агрессивной углекислотой. Она растворяет карбонатные пленки и этим способствует протеканию электрохимической коррозии металлических трубопроводов, а также разрушающе действует па бетонные сооружения. Определяя ее концентрацию, можно производить оценку стабильности воды. Однако в практических условиях большое распространение получил метод Ланжелье [12], в соответствии с которым по химическому анализу определяется величина pH равновесного насыщения воды карбонатом кальция [c.85]

    Присадки. Вводимые в смазки ингибиторы коррозии препятствуют протеканию электрохимических процессов на поверхности металла под воздействием внешней среды, а противокоррозионные присадки не допускают химического воздействия коррозионно-агрессивных компонентов смазки на поверхность металла. Выбор присадок зависит от многих факторов, среди которых важными являются условия применения смазок, состав металла и др. Для защиты черных металлов от химической коррозии используют сульфиды и дисульфиды. Для защиты свинца от действия аминов или свободных органических кислот применяют фосфиты и диалкилдитиофосфаты, для защиты меди медных сплавов — производные бензотриазола и меркаптобен-зотриазола. Противокоррозионные присадки, защищающие металл от химической коррозии, в условиях электрохимических процессов могут усиливать коррозию металла. [c.328]

    Сложность и своеобразие протекания процесса коррозии подземных металлических трубопроводов обусловлены особыми условиями подземной среды, где взаимодействуют атмосфера, биосфера, литосфера и гидросфера. Подземные трубопроводы подвержены воздействию большого числа изменяюшихся химических, физических и биологических факторов. Совокупность воздействия этих переменных факторов и определяет коррозионное воздействие среды на подземные металлические сооружения. Процесс подземной коррозии протекает как процесс коррозии металла в водной коррозионной среде. [c.5]

    Присутствие влаги или кислорода не только мешает протеканию химических процессов, но чрезвычайно усиливает коррозию аппаратуры. Так, нержавеющая сталь может противостоять действию сухих расплавленных галогенидов щелочных металлов до температуры 500°. В присутствии же следов влаги или кислорода контейнер из нержавеющей стали быстро разъедается. Это условие исключает применение большинства керамических материалов, так как они более или менее легко растворяются в расплавленных галогенидах, особенно во фторидах. Например,, жидкий фторид бария при температуре плавления разъедает сильно обожженную перекристаллизованную окись алюминия со скоростью 2,5 мм в 30 мин. Наоборот, графит хорошо противостоит расплавленному фториду бария, в то время как многие расплавленные хлориды его разъедают. Однако графит нельзя применять в тех случаях, когда в аппаратуре одновременно должен находиться металл, так как графит с металлом реагирует. Из металлов наряду со сталью может применяться тантал. Тантал устойчив в расплавленных щелочных и щелочноземельных хлоридах и в расплавленном металлическом топливе, как висмутурановый сплав. [c.216]

    Встречаются также условия, в которых, наряду с коррозионной средой, на металл действуют знакопеременные нагрузки (повторяющееся сжатие, растяжение, изгиб, скручивание и т. п.), вызывающие усталость металла. В этом случае разрушение металла наступает быстрее, чем при действии только одного из указанных факторов, и такое разрушение принято называть коррозионной усталостью. Разрушение металла в условиях ударного воздействия коррозионной среды получило особое название коррозионная кавитация . Часты случаи, когда коррозия металла начинается с поверхности, но затем распространяется под поверхностные слои металла, в результате чего металл расслаивается (подповерхностная коррозия). По механизму протекания коррозионного процесса различают химическую коррозию (коррозию в газах без конденсации влаги на поверхности металла, а также в среде агрессивных органических веществ — неэлектролитах) и электрохимическую коррозию, относящуюся обычно к случаям коррозии с возможностью протекания электрического тока. В этих случаях вследствие, например, структурной неоднородности металла на его поверхности при взаимодействии с электролитом возникает множество микрогальванопар. Возможно также возникновение и макрогальванопар, например в месте контакта разнородных металлов (контактная коррозия). , [c.7]


Смотреть страницы где упоминается термин Условия протекания химической коррозии: [c.6]    [c.8]    [c.82]    [c.91]    [c.48]    [c.192]    [c.79]   
Смотреть главы в:

Противокоррозионная защита трубопроводов и резервуаров -> Условия протекания химической коррозии




ПОИСК





Смотрите так же термины и статьи:

Коррозия химическая

Условие химического



© 2025 chem21.info Реклама на сайте