Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы коррозионные классификация

    Кроме классификации коррозионных процессов по механизму существуют классификации по другим признакам по характеру разрушения ( сплошная, местная, язвенная, точечная и т.д.), условиям протекания ( контактная, щелевая, фреттинг-коррозия. газовая, атмосферная и т.д.). [c.57]

    КЛАССИФИКАЦИЯ КОРРОЗИОННЫХ ПРОЦЕССОВ [c.12]

    Согласно классификации, предложенной Н. Д. Томашовым, при применении лакокрасочных покрытий с пассивирующим пигментом коррозионный процесс тормозится за счет увеличения степени анодного контроля. Некоторые изолирующие покрытия могут тормозить коррозию вследствие увеличения омического сопротивления (см. рис. 1.4, в). [c.17]


    Классификация коррозионных процессов и механизм химической и электрохимической коррозии рассмотрен в разделе 1.6. [c.90]

    Классификация коррозионных процессов по механизму протекания [c.12]

    ТЕРМИНОЛОГИЯ и КЛАССИФИКАЦИЯ КОРРОЗИОННЫХ ПРОЦЕССОВ [c.5]

    Терминология и классификация коррозионных процессов [c.7]

    Основная задача настоящего справочника — обобщение и систематизация материалов, необходимых специалистам, работающим в области химии и технологии обработки воды,— научным работникам, технологам, проектантам, работникам химических лабораторий. В нем приведены общие сведения о воде и водных растворах основные характеристики природных водных источников и присутствующих в них компонентов классификация примесей по фазово-дисперсному состоянию технологические процессы и реагенты, применяемые при обработке воды методы анализа природных вод, компонентов промышленных сточных вод и применяемых для их очистки веществ схемы технологических сооружений и характеристики используемых в водоподготовка реагентов для осветления, обесцвечивания и обеззараживания природных вод специальные методы обработки природных вод методы очистки промышленных сточных вод сведения о коррозионной стойкости конструкционных материалов и основных требованиях по технике безопасности и промышленной санитарии. [c.4]

    Методы защиты металлоконструкций от коррозии основаны на целенаправленном воздействии, приводящем к полному или частичному снижению активности факторов, способствующих развитию коррозионных процессов, Методы защиты от коррозии можно условно разделить на методы воздействия на металл и методы воздей-ствия на среду, а также комбинированные методы. Классификация методов представлена на рис. 1.4. [c.26]

    В дальнейшем была дана классификация органических ингибиторов коррозии, учитывающая их особенности и особенности коррозионного процесса. Было сформулировано, какими свойствами должны обладать органические соединения для того, чтобы проявлять высокую ингибирующую способность на металлах с различной величиной и природой водородного перенапряжения (например, на железе и цинке), чтобы быть ингибиторами при различных условиях протекания коррозии (например, в условиях водородной или кислородной деполяризации) и т. д. [c.136]

    Классификация методов исследования коррозионных процессов по аппаратурному оформлению и оценок коррозионных эффектов [c.647]


    Классификация коррозионных процессов [c.12]

    Одним из главнейших способов классификации коррозии, который позволяет наиболее полно охарактеризовать процессы, протекающие при взаимодействии материалов и коррозионных сред, является классификация по механизму коррозионного процесса. По этому методу классификации коррозию принято делить на следующие виды коррозия химическая, электрохимическая и биохимическая. [c.49]

    Несмотря на многообразие форм проявления коррозионных процессов на металлических материалах, существует классификация, позволяющая более или менее четко относить каждое из наблюдаемых на практике коррозионных поражений к определенному классу. В один класс выделены так называемые локальные коррозионные процессы, общей чертой которых является то, что все они протекают на сравнительно небольших по площади участках поверхности металла и развиваются с крайне высокой скоростью. В результате происходит быстрая потеря металлическими конструкциями эксплуатационных свойств из-за разрушения их сравнительно небольших участков. Повышенная опасность локальных коррозионных процессов связана с тем, что из-за малых размеров пораженных ими площадей поверхности и высоких скоростей растворения металла в них существование самого очага зачастую обнаруживается только в момент выхода оборудования из строя. Постоянное ужесточение условий эксплуатации металлического оборудования и вовлечение в промышленную сферу все новых металлических конструкционных материалов приводит к тому, что с течением времени доля локальных коррозионных поражений неуклонно возрастает. [c.121]

    В соответствие с принятой классификацией в этой части книги будут рассмотрены основные закономерности протекания коррозионных процессов в природных условиях. Это атмосферная, почвенная и морская коррозия. [c.150]

    Факторы, определяющие характер и вид коррозии, весьма разнообразны. Основные причины коррозии металлов заложены в их сЕойствах, термодинамической неустойчивости, стремлении переходить из металлического состояния в более энергетически устойчивое— окисное или ионное состояние. Большое многообразие металлов, коррозионных сред и условий их контакта обусловливают различные виды корразии. На рис. 83 приведена обобщенная классификация процессов коррозии металлов, составленная по [c.358]

    КЛАССИФИКАЦИЯ КОРРОЗИОННЫХ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ В АТМОСФЕРЕ [c.135]

    В табл. 5 приведена классификация методов защиты от коррозии, сделанная с учетом основного фактора защиты для каждого метода. Как видно из таблицы, для защиты практически применяют как методы, базирующиеся на уменьшении степени термодинамической нестабильности, так и методы, основанные на торможении кинетики катодных и анодных процессов и, в несколько меньшей степени, методы, воздействующие посредством увеличения общего омического сопротивления коррозионной системы. [c.46]

    Современная теория коррозии капиллярно-пористых цементных материалов основывается на классификации видов коррозии бетона В. М. Москвина [4]. В соответствии с этой классификацией все физико-химические процессы, определяющие коррозионное разрушение бетона, делятся на три основных вида. [c.120]

    В настоящей работе дается обзор литературы по коррозии металлов и сплавов в расплавленных солях, причем делается попытка классификации по объектам исследования и выводам авторов о механизме коррозионных процессов. [c.172]

    Несмотря на условность такой классификации уже имеющиеся опытные данные свидетельствуют о существенном различии в характере коррозионных процессов, развивающихся на границе раздела металл—газ и металл—электролит. [c.154]

    Глава 1. ОБЩИЕ ПОНЯТИЯ О КОРРОЗИИ МЕТАЛЛОВ 1. Классификация коррозионных процессов [c.7]

    Классификация коррозионных процессов. Обычно коррозионные процессы различают по условиям прохождения и характеру агрессивной среды. Известны следующие виды коррозионных процессов. [c.177]

    Из приведенной здесь классификации коррозионных процессов принято считать, что только в сухих газах и не проводящих электрический ток жидкостях коррозия протекает но химическому механизму, а что во всех остальных случаях протекает электрохимическая коррозия. Она идет так, что передача электронов от металлов к окислителям приводит к деятельности гальванических элементов, которые (по разным причинам) образуются на поверхности металла. Одной из возможных причин появления таких гальванических элементов являются примеси, существующие в технических металлах, которые вместе с основным металлом образуют электроды гальванопар, как это изображено на рис. 46. Другой причиной могут быть поры в пленке окиси, обычно существующей на поверхности металлов (рис. 47). Обнаженный металл и [c.180]

    Для осуществления такой классификации необходимо в каждом способе защиты правильно установить ту ступень коррозионного процесса, которая в основном тормозится при осуществлении данного метода защиты, т. е. установить основной контролирующий фактор данного метода защиты. [c.6]


    Факторы, определяющие характер и вид коррозии, весьма разнообразны. Основные причины коррозии металлов заложены в их свойствах термодинамической неустойчивости, стремлении переходить из металлического состояния в более энергетически устойчивое — оксидное или ионное состояние. Большое многообразие металлов, коррозионных сред и условий их контакта обусловливают различные виды коррозии. На рис, 23,2 приведена обобщенная классификация различных вндов коррозии металлов в зависимости от коррозионной среды характера разрушения условий эксплуатации и механизма коррозионного процесса. Первая группа не нуждается в комментариях о четвертой было сказано раньше. [c.280]

    К качеству каждого из перечисленных масел предъявляются специфп-ческие требования, находяш ие соответствующее отражение в технических условиях на масло данного назначения. Однако обычные технические условия на масла даже в их современном виде не дают исчерпывающей характеристики всех свойств масел и в большей степени служат целям технологического контроля в процессе производства. Только за последние годы в технических условиях на масла появились показатели, характеризующие в топ или иной мере эксплуатационные свойства масел. К таким показателям относятся термоокислительная стабильность, моющие свойства, коррозионность и некоторые другие. Все большее значение для оценки качеств масел приобретают испытания их на натурных и модельных установках. Результаты этих испытаний масел наряду с важнейшими физико-химическими показателями положены в основу современных советских и зарубежных классификаций масел. [c.354]

    Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Г.Дэви и М. Фарадея, установивших закон электролиза. Так, М. Фарадей предложил ва кнейшее для дальнейшего развития электрохимической теории коррозии соотношение между массой аноднорастворяющегося металла и количеством протекающего электричества, а также высказал (проверено Г. Дэви) предположение о пленочном механизме пассивности железа и электрохимической сущности процессов растворения металлов. В 1830 г. швейцарский физикохимик О. Де да Рив ч ко сформулировал представления об электрохимическом характере коррозии (он объяснил растворение цинка в кислоте действием микрогальванических элементов). Русский ученый H.H. Бекетов (1865 г.) исследовал явление вытеснения из раствора одних металлов другими, а Д.И. Менделеев (1869 г.) предложил периодический закон элементов, который имеет очень важное значение для оценки и классификации коррозионных свойств различных металлов. Важен вклад шведского физикохимика С. Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации и немецкого физикохимика В. Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов. [c.4]

    Пр.И1менительно, к коррозионным проблемам случаи, когда анодный продукт хорошо растворим, следует отличать от таких, когда на аноде образуются нерастворимые соединения в виде гидроокисей, основных или нейтральных солей. Переходя в раствор, ион металла либо вступает в связь с молекулами растворителя, или же образует комплексные ионы. Наконец, следует иметь в виду возможность. повышения положительной валентности металлических ионов (соответственно понижения отрицательной валентности комплексных анионов). Если же потенциал анода достигает высоких положительных значений, то ко всем перечисленным направлениям анодных реакций добавляется окисление воды с выделением кислорода. На основании сказанного можно в следующем виде п,редста1вить классификацию анодных процессов. [c.93]

    Классификация К. м. определяется конкретньт1и особенностями среды и условиями протекания процесса (подводом окислителя, агрегатным состоянием и отводом продуктов коррозии, возможностью пассивации металла и др.). Обычно выделяют К. м. в природных среда -атмосферную коррозию, морскую коррозию, подземную коррозию, био-коррозию нередко особо рассматривают К. м. в пресных водах (речных и озерных), геотермальных, пластовых, шахтных и др Еще более многообразны виды К. м. в техн. средах, различают К. м. в к-тах (неокислительных и окислительных), щелочах, орг. средах (напр., смазочноохлаждающих жидкостях, маслах, пищ. продуктах и др.), бетоне, расплавах солсй, оборотных и сточных водах и др. По условиям протекания наряду с контактной и щелевой К. м. выделяют коррозию по ватерлинии, коррозию в зонах обрызгивания, переменного смачивания, конденсации кислых паров радиационную К. м., коррозию при теплопередаче, коррозию блуждающими токами и др. Особую группу образуют коррозиоиномех. разрушения, в к-рую входят помимо коррозионного растрескивания и коррозионной усталости фреттинг-коррозия, водородное охрупчивание, эрозионная коррозия (в пульпах и суспензиях с истирающими твердыми частицами), кавитационная коррозия (при одноврем. воздействии агрессивной среды и кавитации). В общем случае воздействие агрессивной среды и мех. факторов на разрушение неаддитивно. Напр., при эрозионной К. м, потери металла вследствие разрушения защитной пленки м, б. намного больше суммы потерь от эрозии и К. м. по отдельности. [c.482]

    Учебное пособие предназначено студентам 5 курса (9 семестр) спехдиализации 170506 Техника антикоррозионной зашиты оборудования и сооружений и содержит основные сведения о классификации, структуре, свойствах, применении и технологиях обработки высоколегированных стапей и сплавов, а также некоторых других материалов в коррозионностойком исполнении. Особое внимание уделяется взаимосвязи коррозионных свойств материалов с их структурой, получаемой в процессе выплавки, термообработки, упрочнения и антикоррозионной обработки. [c.2]

    Систематизация данных об изменении интенсивности отказов элементов химико-технологической системы в процессе эксплуатации позволяет установить определенную классификацию периодов отказов элементов (рис. 10.6). Для зоны I характерна высокая интенсивность отказов, коррозионная агрессивность технологических сред в этот период очень высока. В период пуска и испытаний (зона I) возможны серьезны е коррозионные повреждения аппаратуры и коммуникаций, в частности из-за неправильной методики их организации. Так, в [ПО] описана интенсивная коррозия трубопроводов из нержавеющей стали 12Х18Н10Т в период испытаний под действием речной воды с повышенным содержанием солей (до [c.188]

    Для классификации стекол важна их химическая стойкость при повышенных температурах и давлениях (испытания в автоклавах) 8. Мори и Боуэн описали коррозионное действие воды на оптическое стекло при 30 и 550°С. Процесс гидротермальной коррозии в общем соответство1вал результатам испытания по Мили-усу, использовавшему в качестве индикатора иод-эозин. Стекла с большим иодэозиновым показателем также более чувствительны и более сильно подвержены коррозии от действия водяных паров при высоком давлении. При этом образуются кристаллические Р-кварц, дисиликат бария, моносиликат свинца и другие неподдаю-щиеся надежной идентификации кристаллические фазы. [c.901]

    Сульфатная зольность нормативной документацией на производство моторных масел и классификацией АСЕА ограничена верхним пределом (не должна быть более допустимой). Это обусловлено тем, что излишне зольное масло может приводить к преждевременному воспламенению рабочей смеси из-за образования отложений в камере сгорания, неблагоприятно влиять на работоспособность свечей зажигания агрегатов обезвреживания отработавших газов, способствовать повышенному износу деталей вследствие абразивного воздействия на поверхности трения. Базовые масла практически беззольны. Довольно вьюокая сульфатная зольность моторных масел в основном обусловлена наличием в их составе моющих присадок, содержащих металлы. Эти присадки абсолютно необходимы для предотвращения Harapo- и лакообразования на поршнях и придания маслам способности нейтрализовывать кислоты, характеризуемой количественно щелочным числом. Чем оно больше, тем большее количество кислот, образующихся при окислении масла и сгорании топлива, может быть переведено в нейтральные соединения. В противном случае эти кислоты вызвали бы коррозионный износ деталей двигателя и усилили процессы образования различных углеродистых отложений на них. При работе масла в двигателе щелочное число неизбежно снижается, нейтрализующие присадки срабатываются. Такое снижение имеет допустимые пределы, по достижении которых масло считается утратившим работоспособность. Поэтому при прочих равных условиях предпочтительнее масло, у которого щелочное число выше. [c.374]


Смотреть страницы где упоминается термин Процессы коррозионные классификация: [c.223]    [c.59]    [c.12]    [c.9]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.8 , c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Классификация коррозионных процессов и агрессивных сред

Классификация коррозионных процессов по механизму протекания

Классификация коррозионных процессов по условию протекания

Классификация коррозионных процессов, протекающих в атмосфере

Классификация методов исследования коррозионных процессов по аппаратурному оформлению и оценок коррозионных эффектов

Определение и классификация коррозионных процессов

Процессы коррозионные

Терминология и классификация коррозионных процессов



© 2025 chem21.info Реклама на сайте