Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия скорости процесса

    Для количественного выражения скорости коррозии металлов приняты показатели коррозии глубинный, изменения массы, объемный, механический и другие, которые являются средней скоростью процесса за время т, т. е. Ау/Ат. [c.40]

    Суммарный процесс химической коррозии металлов в неэлектролитах так же, как и в сухих газах, может быть разделен на ряд стадий, каждая из которых определяет скорость процесса  [c.141]


    Судя по количеству водорода, накапливающегося в котлах в зависимости от времени, а также по данным лабораторных измерений скорости коррозии, скорость роста оксида подчиняется параболическому закону 123], а следовательно, контролируется диффузией. Механизм этого процесса, как это описано в гл. 10, связан с миграцией ионов и электронов через слой твердых продуктов реакции. [c.283]

    По отношению к бетону могут проявлять агрессивность различные виды природных и сточных вод. Существуют три вида разрушения бетона 1) растворение и выщелачивание составных частей бетона — обменные реакции, сопровождающиеся образованием растворимых соединений 2) реакции обмена, в результате которых образуются в бетоне рыхлые осадки, не проявляющие вяжущих свойств, способные вымываться во внешнюю среду 3) реакции, при которых образуются труднорастворимые соединения, объем которых превышает объем составных частей бетона. Классификация эта условна. На практике встречаются виды коррозии, ь которых проявляются признаки, характерные как для первого, так и для второго вида коррозии. Скорость процесса коррозии и его интенсивность зависят как от состава и качества, бетона, т к и характеристики внешней среды (химический состав, солесодержание воды, коэффициент фильтрации ее через грунт, условия омывания бетона водой и др.). В зависимости от химической природы коррозионного агента различают следующие виды коррозии бетона в воде 1) кислотную 2) углекислотную 3) выщелачивающую 4) магнезиальную 5) сульфатную. [c.106]

    Кинетика химической коррозии. Скорость химической коррозии зависит от многих факторов и, в первую очередь, от характера продуктов коррозии. В процессе окисления на поверхности металла образуется твердая пленка оксидов. Для дальнейшего продолжения коррозии необходимо, чтобы ионы металла или кислород (или оба одновременно) диффундировали через эту пленку. Обычно с поверхности раздела металл — оксид в направлении от металла к внешней поверхности пленки происходит диффузия ионов металла, а не атомов, так как ионы металлов по размерам меньше атомов. Одновременно в этом же направлении должны перемеш,аться электроны. Ионы О имеют больший радиус, чем атомы, поэтому с поверхности раздела оксид — газ в глубь пленки двигаются не ионы, а атомы кислорода, которые в пленке ионизируются (О + 2е = О ") и, встречаясь с ионами металла, образуют оксиды. [c.209]


    Гетерогенно-электрохимический и гомогенно-электрохимический механизмы коррозии обычно накладываются один на другой, реализуясь одновременно. Соотношение скоростей процессов, протекающих ио одному и другому механизму, в зависимости от конкретных условий может изменяться в широком диапазоне, но [c.18]

    При наличии в сплаве различных структурных составляющих (карбидов, интерметаллических соединений), а на поверхности металлов окисных пленок, резкая дифференциация видна еще более отчетливо. Между тем расчет может в лучшем случае дать лишь суммарный эффект, отнесенный ко всей поверхности. Для инженерных расчетов, а также при разработке новых сплавов, весьма важно знать характер распределения коррозии, т. е. по образному выражению Акимова, структуру коррозии . Для иллюстрации этой мысли приведем несколько примеров. Средняя скорость коррозии стали в морской воде определяется цифрой 0,1—0,15 мм год. Такая скорость не представляла бы никакой опасности для морских сооружений, ибо запас прочности, принимаемый в расчетах, например кораблей, обеспечивал бы по крайней мере 20-летний срок их службы. Между тем, вследствие неравномерности характера коррозии, скорость процесса в отдельных точках достигает 0,4—0,5 мм год, что и определяет срок службы конструкции в целом. [c.83]

    Алюминий и его сплавы способны образовывать на своей поверхности относительно прочные окисные пленки, защищающие металл от коррозии. Поэтому в обычных не слишком агрессивных атмосферах эти сплавы обладают удовлетворительной стойкостью. Однако в промышленных и морских атмосферах, содержащих коррозионно-активные газы и соли, стойкость алюминиевых сплавов падает, и они подвергаются преимущественно точечной коррозии. Скорость процесса при этом зависит от состава сплавов и их термической обработки. [c.278]

    Температура очень сильно влияет на скорость процессов химической коррозии металлов. С повышением температуры процессы окисления металлов протекают значительно быстрее, не- [c.122]

    Описанное выше соотношение между скоростью химической коррозии металлов и температурой может быть осложнено или нарушено, если с изменением температуры изменяется структура или другие свойства металла или образующейся на нем пленки продуктов коррозии. Довольно часто прямая lg к (или lg г/) = = / (1/Т) имеет изломы (рис. 84 и 85) и ее отдельным участкам соответствуют разные значения эффективной энергии активации Q, характеризующие зависимость скорости процесса от температуры и обусловленные качественными изменениями в металле, в образующейся пленке продуктов коррозии и в механизме протекания процесса. [c.124]

    Если скорость общей реакции взаимодействия металла с газовой фазой определяется скоростью процесса диффузии в слое образующего продукта коррозии, то зависимость скорости окисления от давления окисляющего газа может быть совершенно иной и разной для разных поверхностных соединений. [c.130]

    Влияние температуры на скорость процесса в общем случае описывается уравнением типа (242), но может быть осложнено изменением растворимости реагента-окислителя и пленки продуктов коррозии металла в неэлектролите при перемене температуры. [c.141]

    Таким образом, в условиях контроля процесса коррозии металлов диффузией кислорода природа катодных и анодных участков и омическое сопротивление электролита не влияют существенно на скорость процесса. [c.244]

    Если в особо чистый металл вводить катодные примеси или структурные составляющие, то в условиях контроля катодного процесса диффузией кислорода это приведет, согласно уравнению (499), к увеличению путей диффузии кислорода и повышению скорости коррозии металла. Однако начиная с некоторой сравнительно низкой степени загрязненности катодными примесями, которая свойственна техническим металлам, дальнейшее увеличение катодных примесей или структурных составляющих мало влияет на скорость процесса. Н. Д. Томашов доказал, что при достаточно тонкой дисперсности катодов на поверхности металла или сплава, корродирующего с кислородной деполяризацией при ограниченной скорости диффузии кислорода, даже при сравнительно небольшой общей поверхности микрокатодов, практически используется весь возможный объем электролита для диффузии кислорода к данной корродирующей поверхности (рис. 168), т. е. микрокатоды работают так, как будто [c.244]

    Как показали исследования в НИФХИ им. Л. Я- Карпова и на кафедре коррозии металлов МИСиС, коррозия ряда металлов в кислых и нейтральных электролитах протекает иногда по смешанному химико-электрохимическому или по чисто химическому механизму. Одним из важных признаков химического механизма коррозии металла является независимость скорости процесса от потенциала. [c.279]

    В ряде случаев влияние температуры на скорость электрохимической коррозии металла обусловлено изменением свойств защитной пленки. Так, при коррозии цинка в дистиллированной воде скорость процесса при повышении температуры от 50° С растет, доходит до максимума, а затем резко падает (рис. 253). Это объясняется тем, что в области температур 50—95° С на металле образуется зернистая, плохо пристающая к нему пленка вторичных продуктов коррозии со слабыми защитными свойствами, в то время как ниже и выше этой температурной области образуется плотная, хорошо прилегающая к металлу пленка с высокими защитными свойствами. [c.356]


    В заключение следует остановиться на своеобразном методе воздействия на скорость процессов кислотной коррозии путем введения в кислоту тех или иных ингибиторов (замедлителей) коррозии. Так называются вещества, которые при введении (в незначительном количестве) в коррозионную среду заметно снижают скорость коррозии. [c.460]

    Кроме массовых (гравиметрических) способов измерения потерь металла при оценке скорости коррозии нередко прибегают к объемным (волюметрическим) способам. Это возможно в тех случаях, когда окисление металла сопровождается расходом или выделением газа. Так, при атмосферной коррозии расходуется кислород, а при кислотной выделяется водород. Объем израсходованного кислорода или выделившегося водорода пропорционален массе окислившегося металла. При этом следует помнить, что на 1 моль израсходованного кислорода окисляются 4 моля металла, а при выделении водорода на один моль водорода окисляются два моля металла. Измерение объема менее точно, чем взвешивание, но при массовом определении скорости коррозии необходимо прерывать испытание, удалять продукты коррозии и лишь после этого определять уменьшение массы образца. Поэтому найденная скорость коррозии представляет собой некоторую усредненную величину аа 1 ерйод испытания. При этом предполагается, что скорость процесса не изм яялась в течение опыта, что не всегда справедливо. За изменением объема газа в некоторой замкнутой системе можно следить, не прерывая испытания, что дает более содержательную информацию о кинетике процесса коррозии. Массовую потерю металла (г) при атмосферной и кислотной коррозии вычисляют по формуле [c.11]

    Скорость процессов коррозии цементного камня зависит от многих факторов. Течение этих процессов часто бывает осложнено отложением продуктов коррозии в порах вблизи поверхности контакта с агрессивной средой. Это препятствует проникновению агрессивной среды в глубь цементного камня. Такое уплотнение наружного слоя особенно характерно для магнезиальной коррозии вследствие очень низкой растворимости и гелеобразного состояния Mg(0H)2. Однако коррозия при этом замедляется ненадолго, так как уплотненный слой обладает свойством полупроницаемости и в [c.127]

    Защита оборудования от коррозии при воздействии среды, содержащей сероводород, может осуществляться ингибитором И-1-А, который растворяется в безводной нефти с концентрацией 5%- Указанным раствором заполнялось оборудование, а затем после непродолжительной выдержки вводилось в эксплуатацию. Ингибитор И-1-А (смесь пиридиновых высших оснований) — весьма эффективное средство защиты от коррозии скорость коррозии замедляется на 90—95%. Высокая защита (последействие) сохраняется в течение 220 сут, что позволяет закачивать раствор ингибитора в установки один раз в 7 месяцев. Защита десорберов ингибитором коррозии И-1-А оказалась неэффективной из-за интенсивной вспениваемости взаимодействующих в процессе десорбции жидкостей, приводящей к большим уносам и потерям ингибиторов. Многие применяемые для защиты от сероводородной коррозии ингибиторы (И-1-А, АНПО, ИКСГ-1, КО, ГИПХ-37, катапин, диамин-диолеат) обладают свойствами поверхностноактивных веществ и воздействуют на среду как стабилизаторы эмульсий типа вода в масле . [c.189]

    На рис.2.11 приведены графики теоретического изменения относительного среднего напряжения и скорости коррозии в процессе эксплуатации труб с разными отношениями начальных радиусов г)о. Как видно, напряжения и скорость коррозии со временем заметно возрастают. Например, для трубы с т о = 1,05 скорость коррозии в предельном состоянии (оср более чем в 1,5 раза [c.110]

    При изучении коррозии одних термодинамических данных часто бывает недостаточно для суждения о возможности протекания процесса. Скорость коррозии определяется скоростями процессов окисления металла и восстановления окислителя. При электрохимической коррозии контакт окислителя и восстановителя не обязателен, так как электроны могут перемещаться по металлу, но оба процесса проходят одновременно и с одинаковыми скоростями (для сохранения равенства отданных и принятых электронов). Скорость коррозии определяется скоростью наиболее медленной стадии, поэтому процесс коррозии можно остановить, сместив равновесие какой-либо одной стадии в противоположном направлении или замедлив ее при помощи ингибитора коррозии. [c.270]

    В абсорберах тарельчатого или насадочного типа процессы подготовки газа стараются вести при режимах, приближающихся к режиму "эмульгирования". Именно в этом случае достигается максимум скорости процессов массообмена. Удержать процесс в этом режиме очень трудно, и практически скорость газа в абсорбционных колоннах составляет примерно 30% от скорости эмульгирования. При попадани е в абсорбент примесей, обладающих поверхностно-активными или стабилизирующими пену свойствами, эмульгирование и последующее интенсивное пенообразование наступают при значительно меньших скоростях газов и паров в абсорбционной колонне [10]. К таким примесям относятся ингибиторы коррозии, продукты взаимодействия аминов с неуглеводородными компонентами сырьевого газа, углеводороды конденсата, химические реагенты предыдущих стадий подготовки газа, соли пластовых вод, механические примеси (углеродные дисперсии, окалина и др.). [c.76]

    Наряду с указанными выше внешними факторами коррозии большую роль в скорости процесса играет состав и микроструктура металла. Это — внутренние факторы коррозии. Здесь установлена такая. закономерность чем металл однороднее по своей внутренней структуре, тем выше его коррозионная стойкость и обратно всякие неоднородности в металле могут способствовать убыстрению коррозионного его разрушения. [c.367]

    Если потенциал металла отрицательнее потенциала водородного электрода, то процесс коррозии протекает как с поглощением кислорода, так и с выделением водорода. Если кислород в системе отсутствует или быстро расходуется в результате коррозии, например, в закрытой системе, то коррозия протекает лишь с выделением водорода. Однако и при наличии кислорода в системе скорость его восстановления в некоторых случаях мала по сравнению со скоростью выделения водорода, например, в растворе кислоты на цинке, железе, марганце. При этом в первом приближении можно пренебречь скоростью коррозии за счет поглощения кислорода и говорить лишь о скорости коррозии с выделением водорода. Ввиду большой подвижности ионов Н+ обычно стадия подвода не лимитирует реакцию катодного выделения водорода. Скорость процесса определяется скоростью собственной реакции восстановления ионов Н Н+ + е - -Н аде ИЛИ соединением атомов водорода в молекулу Надс + Н,дс->-Н2. [c.232]

    При изучении коррозии цинка в дистиллированной воде в указанном выше интервале температур другими исследователями были получены аналогичные результаты [5, 6]. На основании полученных данных можно предположить, что на поверхностн цинка, кадмия, магниевого сплава н меди в исследованных нами условиях, вследствие образования плотных пленок продуктов коррозии, скорость процесса лимитируется диффузией. [c.82]

    В растворах щелочей скорость коррозии металлов в основном зависит от характера образующихся продуктов коррозии. При образовании нерастворимых в электролите продуктов коррозии скорость процесса с повышением концентрации ра -твсра, т. е. с увеличением его pH, уменьшается. Такая закономерность наблюдается для железа и магния. Если же в процессе коррозии образуются растворимые соединения, то скорость коррозии металла с повышением концентрации раствора увеличивается. Так ведут себя алюминий, свинец, цинк, олово. [c.66]

    Кинетическое истолкование явлений электрохимической коррозии было впервые предложено А. Н. Фрумкиным (1932), который обратил внимание на то, что процесс разложения амальгам щелочных металлов подчиняется законам электрохимической кинетики. Эта идея была развита затем количественно Вагнером и Траудом (1938), которым удалось показать хорошее согласие теории с экс-периментальными данными по скоростям разложения амальгам Цинка. Близкие взгляды были высказаны А. И. Шультиным, Я- В. Дурдиным и рядом других авторов. Плодотворность использования закономерностей электрохимической кинетики для количественного описания коррозии твердых металлов была показана Я. М. Колотыркиным, а также В. В. Скорчеллетти, М. Грином и др. Работы этих ученых оказали значительное влияние на развитие современных взглядов на процессы коррозии и способствовали установлению связи между электрохимической наукой и учением о коррозии металлов. Кинетическую теорию коррозии часто неудачно называют гомогенно-электрохимической теорией или гомогенно-электрохимическим механизмом коррозии. К процессу коррозии, всегда протекающему на границе раздела минимум двух фаз, т. е. по своей природе типично гетерогенному процессу, не следует применять термин гомогенный . Правильнее называть эту теорию коррозии кинетической теорией. [c.493]

    Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес. [c.204]

    В условиях возможного пассивирования несплошные катодные покрытия могут облегчить пассивирование защищаемого металла в порах, повышая их анодный ток до пассивирующего значения, т. е. защищать его не только механически, но и электрохимически. Так, осаждение пористых покрытий из Си и Pt на хромистой и хромоникелевой сталях повышает их коррозионную стойкость в H2SO4 (рис. 220) начиная с некоторой их толщины, когда площадь катодного покрытия не слишком мала, и, наоборот, понижает их коррозионную стойкость в сильно депассивирующей среде НС1 (рис. 221), облегчая протекание контролирующего скорость коррозии катодного процесса. [c.319]

    Хотя характер термообработки, который вызывает склонность к межкристаллитной коррозии высокохромистых и хромоникелевых сталей типа Х18Н9, различен, что обусловлено различием скоростей процессов диффузии в твердых а- и у-растворах (скорость диффузии в а-фазе больше), процессы, приводящие к появлению этой склонности у сталей обоих типов, почти идентичны. [c.424]

    Процесс обжига колчедана следует вести в определенном интервале температур t макс- При слишком низких температурах скорость процесса недостаточна, при слишком высоких — происходит расплавление огарка и образуется Fe204 возможна также коррозия аппаратуры и другие отклонения от оптимального режима. [c.41]

    На увеличение скорости процессов окисления смазочного масла и на уменьшение антиокислительной активности ингибиторов кроме высокой температуры оказывают каталитическое влияние пбверхности трения металлов и продукты их коррозии. Так, в результате каталитического действия металла на окисление синте- [c.170]

    Влияние легирующих добавок в этих средах зачастую иное, чем в водных растворах- возникающие гальванические пары и внешняя поляризация не влияют на скорость коррозии скорости коррозии одинаковы в паровой фазе и в кипящей жидкости. Все эти факты являются сильными аргументами в пользу того, что коррозия протекает не по электрохимическому механизму . Механизм процесса с участием свободных радикалов подтверждается также данными по аналитическому обнаружению радикалов - lg, появление которых, видимо, приводит к красному окрашиванию I4 при взаимодействии его с алюминием. Об этом же свидетельствует легкость, G которой добавки многих органических веществ подавляют реакцию (свободные радикалы очень реакционноспособны). [c.349]

    Измерение объема менее точно, чем взвешивание, но при массовом методе необходимо прервать испытание, удалить продукты коррозии и лишь тогда определять уменьшение массы образца. Поэтому найденная скорость коррозии представляет собой некоторую усредненную величину за период нспытания. При этом предполагается, что скорость процесса не менялась в течение времени, что далеко не всегда справедливо. За изменением объема газа в некоторой замкнутой системе можно следить, не прерывая испытания, что дает более содержательную информацию о кинетике процесса коррозии. [c.15]

    Известно, что общая скорость процесса коррозии определяется скоростью той реакции, которая протекает с наименьшей интенсивностью. Эта стадия процесса называется контролирующим фактором, так как она контролирует скорость всего процесса. Если коррозия металла подземного сооружения определяется деятельностью микро-коррозионных элементов, то контролирующим фактором процесса является катодная или анодная реакция. Коррозионный процесс с катодным контролем (катодна51 реакция) характерен для большинства плотных и увлажненных грунтов, когда основную роль играет реакция присоединения свободного электрона (кислородная или водородная деполяризация) протекающая с минимальной скоростью. Это объясняется торможением поступления воздуха к поверхности корродирующего металла. Для сухих, рыхлых и хорошо аэрируемых грунтов характерен анодный контроль, когда затруднен отвод положительных ионов металла от анодного участка поверхности металлического [c.45]

    Начиная от точки А с увеличением времени воздействия на материал разрывное напряжение будет проходить обратный путь АВСО. До точки О из-за малой скорости процесс химической коррозии не успевает существенно изменить кинетику разрушения, но при увеличении хд процесс разрыва ускоряется и кривая долговеч- [c.339]


Смотреть страницы где упоминается термин Коррозия скорости процесса: [c.487]    [c.501]    [c.331]    [c.73]    [c.79]    [c.21]    [c.46]    [c.33]    [c.152]    [c.190]    [c.3]    [c.281]   
Теоретические основы коррозии металлов (1973) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс скорость

Процессы коррозии

Скорость коррозии



© 2025 chem21.info Реклама на сайте