Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Условия протекания и направление химической реакции

    Условия протекания и направление химической реакции [c.54]

    Химическая реакция, как следует из изложенного (см. 16, гл. II), самопроизвольно может протекать в направлении, при котором система приближается к равновесию. При истинном химическом равновесии дальнейшее изменение изобарного потенциала не происходит АО = 0. Следовательно, изменение изобарного потенциала для совокупности веществ, принимающих участие в химической реакции (при данных условиях), является мерой химического сродства. Как мы уже знаем из главы И, изменение изобарного потенциала есть движущая сила процесса. Отсюда следует, что, чем АО меньше, тем дальше состояние системы от хи.мического равновесия и тем более она реакционно способна. На рисунке 20 дана схема протекания обратимой химической реакции при заданных условиях (температуре и давлении). [c.78]


    Направление химических реакций зависит от их характера. Так, условие (5.15) соблюдается при любой температуре для экзотермических реакций (АЯ < 0), у которых в ходе реакции возрастает число молей газообразных веществ, и следовательно, энтропия (AS > О). У таких реакций обе движущие силы (АЯ) и (TAS) направлены в сторону протекания прямой реакции и AG < О при любых температурах. Такие [c.137]

    По уравнению изотермы химической реакции можно рассчитать изменение энергий Гиббса и Гельмгольца при соответствующих условиях, т. е. определить возможность, направление и предел протекания самопроизвольного процесса. [c.53]

    Знание законов химического равновесия позволяет решать, не прибегая к опыту, многие важнейшие задачи производственной практики и научно-исследовательской работы. Главными из них являются определение условий проведения химической реакции и возможности ее протекания в том или другом направлении, нахождение предела ее протекания, выбор оптимального режима, повышение выхода продукта реакции. [c.13]

    Физическая химия изучает различные свойства веществ в зависимости от их химического состава, строения и внешних условий, влияние внешних условий и воздействий на протекание химических реакций и закономерности химических процессов. Основное внимание в физической химии уделяется изучению направления и скорости химического процесса, а также его конечного результата, т. е. состояния равновесия, а главной задачей является предсказание хода химического процесса и его результата. Важной проблемой современной физической химии является установление связи между строением вещества и его реакционной способностью. [c.5]

    Факторы, определяющие направление протекания химических реакций. В предыдущих параграфах мы рассмотрели несколько примеров, показывающих, что при определенных условиях [c.190]

    Диффузия реагентов во встречных направлениях, которая обусловливает протекание всех химических реакций, за исключением истинно мономолекулярных реакций термического разложения, может проходить легко в газовой и в жидкой фазах. В случае твердых веществ, молекулы и ионы которых закреплены более жестко в решетке, положение совсем иное. При этих условиях протекание реакций в веществах, находящихся в истинно твердом состоянии, долго ставилось под сомнение, и существование этих реакций было окончательно установлено лишь совсем недавно. [c.242]


    Современные физико-химические исследования в любой конкретной области характеризуются применением разнообразных экспериментальных и теоретических методов для изучения различных свойств веществ и выяснения их связи со строением молекул. Вся совокупность данных н указанные выше теоретические методы используются для достижения основной цели—выяснения зависимости направления, скорости и пределов протекания химических превращений от внешних условий и от строения молекул—участников химических реакций. [c.21]

    Совсем иную возможность инициирования химических реакций предоставляет химикам третье, очень медленно вступающее в строй направление-химия в электрических и магнитных полях высокой напряженности. Исходным пунктом послужило наблюдение, что под влиянием сильного электрического поля протекают новые химические реакции. Эксперименты проводились в вакуумной камере при напряженности электрического поля от 10 до 5 10 В/см. Все органические соединения, находившиеся в реакторе под давлением 1,33 10 " бар в парообразном состоянии, при указанной напряженности поля полностью ионизировались. Такие условия благоприятствуют протеканию последовательных химических реакций, таких, как полимеризация, каталитические реакции на поверхности, различные процессы диссоциации и ассоциации. Вплоть до настоящего времени реакции при высокой напряженности поля проводились только с минимальными количествами веществ. Однако специалисты считают возможным использование полученных результатов, например, в гетерогенном катализе. Фактически же теоретические и практические возможности химии при высоких напряжениях ни каче- [c.162]

    В общем случае ход и направление реакций диктуются не только физико-химическими условиями протекания цепи обратимых реакций (равновесными концентрациями), но и вмешательством в них биогенных продуктов обмена - и СО2. Эти продукты постоянно появляются в среде в результате жизнедеятельности микроорганизмов. Поток этих продуктов, в свою очередь, зависит от наличия источников питательных веществ и иных факторов, влияющих на жизнедеятельность микрофлоры. В первую очередь этот поток связан с закономерностями роста и активности микроорганизмов, выделяющих отмеченные в схеме вещества, а не балансом растворимости карбонатов по общеизвестной схеме  [c.13]

    Основное внимание физическая химия уделяет изучению законов протекания химических реакций. В связи с этим, в первую очередь, необходимо изучение условий равновесия химических реакций и зависимости их направления от таких параметров, как температура, давление, концентрация. Это является предметом химической термодинамики. Скорости, с которыми совершаются химические превращения, и причины, приводящие к ускорению или замедлению реакций, изучает химическая кинетика и катализ. Большое место в физической химии занимает изучение строения атомов и молекул и состоящих из них жидкостей и твердых тел. Все возрастающее значение приобретает в последние десятилетия физическая химия процессов, развивающихся на поверхностях жидкостей и твердых тел, например смачивание, адсорбция. Эти процессы особенно важны для систем с высокоразвитой поверхностью, таких, например, как туманы, активные угли с огромной внутренней поверхностью, характеризующейся большим числом микроскопических пор и каналов. Это направление физической химии стало самостоятельной наукой — коллоидной химией. [c.12]

    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]

    Цикл включает передачи Производство серной кислоты , Катализ , РастворЬ , Горение и взрывы , Общие свойства металлов , Ряд напряжений металлов , Коррозия металлов , Электролиз , Производство алюминия , Промышленные способы получения металлов , Производство стали , Окислитель-но-восстановительные реакции , Классификация химических реакций , Закономерности протекания химических реакций . Построение и содержание телепередач цикла направлено не только на правильное усвоение учащимися основных понятий, но также на совершенствование методической работы учителя. Принимая передачи, учитель привыкает при демонстрации опытов и объяснении учебного материала обязательно указывать учащимся конкретные свойства вещества, раскрывать взаимосвязь свойств со строением, фиксировать условия протекания химических реакций, определять возможное направление процесса в других условиях. [c.92]


    В основном смесеобразование осуществляют с помощью горелок, форсунок и регистров для подачи вторичного воздуха (первичным считается воздух, подаваемый в форсунку для распыления горючего). Смесеобразование в большинстве случаев завершается в рабочей камере печи или в камере горения после выхода горючего и воздуха из форсунки (горелки) и регистра или газовой смеси из горелки. Через форсунку и регистр в камеру горения выбрасывается смесь горючего и окислителя, которая загорается на некотором расстоянии от устья, в том месте, где создаются соответствующие условия для воспламенения — необходимое соотношение смеси горючего и окислителя для протекания химической реакции. Одним из основных элементов при распыливании жидких горючих материалов служит распылитель форсунки, назначением которого является разгон и размельчение жидкости путем создания разрывающейся на нити пленки жидкости нити затем распадаются на капли, движущиеся в заданном направлении. На разрыв жидкости, выбрасываемой из устья распылителя, влияют 1) начальное возмущение потока жидкости внутри распылителя, вызывающее турбулизацию жидкости 2) свойство печной среды, в которую выбрасывается поток 3) физические свойства собственно жидкости. [c.29]

    Указанные методы теоретической физики и все экспериментальные данные о свойствах веществ, полученные разными физическими и химическими методами, используются физической химией для достижения основной цели — выяснения зависимости направления и предела протекания химических реакций от внещних условий и от строения веществ — участников реакций. [c.6]

    Применение термодинамических методов для исследования химических реакций в настоящее время дает возможность установить, какие из реакций в рассматриваемой системе при заданных температуре, давлении и концентрациях могут протекать самопроизвольно (т.е. без затраты работы извне), каков предел самопроизвольного их протекания (т. е. каково положение равновесия) и как следует изменить эти условия, чтобы процесс мог совершаться в нужном направлении в требуемой степени. На основе термодинамических методов можно определить также максимальное количество работы, которая может быть получена от системы, или минимальное количество работы, которое необходимо затратить извне для осуществления процесса. Вместе с тем термодинамические методы дают возможность определить тепловые эффекты различных процессов (химического взаимодействия и фазовых переходов). Все это имеет большое значение и для теоретического исследования, и для решения задач прикладного характера [c.13]

    Необходимо подчеркнуть, что термодинамическое понятие обратимости пе совпадает со значением этого термина, в химической кинетике. -Обратимой в кинетике считают такую химическую реакцию, результирующая скорость которой определяется разностью скоростей протекания ее в прямом п обратном направлениях, причем на величину этой разности не накладывается каких-либо ограничений. Для термодинамической обратимости требуется, чтобы реакция проходила в условиях, бесконечно близких к равновесию, когда скорости прямого и обратного процессов различаются лишь на бесконечно малую величину. [c.18]

    С некоторой степенью точности замкнутой системой можно считать каждый элемент объема в ламинарном потоке. Если струя газа или жидкости проходит через реакционный сосуд, в котором созданы условия, необходимые для протекания химической реакции (например, достаточно высокая температура нлн присутствие необходимого катализатора), то при отсутствии конвекции и достаточно малой скорости диффузии вещества в направлении потока каждый объем реакционной смеси можно рассматривать как независимый от остальных, т. е. как перемещающуюся в пространстве замкнутую систему. Такой способ проведения химических реакций широко используется в научно-исследовательской работе и в промышленности. Соответствующие реакторы получили название реакторов идеального вытеснения. [c.34]

    Применительно к химическим процессам второй закон термодинамики можно сформулировать так всякое химическое взаимодействие при неизменных давлении или объеме и постоянстве температуры протекает в направлении уменьшения свободной энергии системы. Пределом протекания химических реакций (т. е. условием равновесия) является достижение некоторого минимального для данных условий значения свободной энергии системы О или Р. Процессы протекают самопроизвольно и дают некоторую полезную работу, если Р<0 или ДС<0. При АР>0 и ДС>0 процессы не могут при заданных условиях (у, Т или р, Т) протекать самопроизвольно и возможны лишь при получении работы извне (например, реакции при электролизе, фотохимические реакции и др.). Изменение термодинамических функций А[1, АР, А/, АО и А5 для любых реакций рассчитывают по закону Гесса аналогично вычислению тепловых эффектов реакций. Значения термодинамических функций при стандартных условиях / = 25°С и р=101 325 Па приводятся в справочных таблицах. [c.61]

    Факторы, определяющие направление протекания химических реакций. При определенных условиях каждая химическая реакция самопроизвольно протекает в определенном направлении. Так, при низких [c.177]

    Направление окислительно-восстановительных реакций. В рассмотренном методе составления уравнений реакций априори предполагалось, что та или иная окислительно-восстановительная реакция возможна. Однако имеется способ предсказания вероятности протекания той или иной окислительно-восстановительной реакции. Для этого необходимо рассчитать изменение энергии Гиббса реакции. В соответствии с законами химической термодинамики (см. гл. IV) окислительно-восстановительная реакция при изобарно-изотермических условиях, как и любая реакция, возможна если энергия Гиббса ее ниже нуля АС< 0. Энергию Гиббса реакции можно рассчитать, зная энергии Гиббса реакций образования продуктов и исходных веществ, которые для стандартных условий приводятся в справочниках. Рассмотрим для примера направление реакций взаимодействия магния и палладия с водой. Энергия Гиббса реакции [c.182]

    Физическая химия использует фундаментальные законы физики и результаты физико-химических экспериментов для исследования свойств веществ и химических реакций в совокупности с сопутствующими им физическими явлениями. Она изучает также влияние внешних воздействий на свойства веществ, химические и фазовые равновесия, на скорость протекания химических реакций. Ее целью является установление законов, определяющих возможность протекания химической реакции в заданном направлении, ее скорость, выход продуктов в зависимости от условий процесса и свойств участвующих в нем веществ. [c.6]

    На основе этих постулатов логическим путем выводятся многие закономерности, связывающие различные макроскопические свойства веществ. Это позволяет установить возможность протекания процесса в интересующем нас направлении. Если таким процессом является химическая реакция, то термодинамика позволяет рассчитать конечный результат — равновесный состав реакционной смеси, оценить максимально возможный выход продуктов реакции и подобрать оптимальные условия (давление, температура) ее проведения. При изучении биологических систем термодинамика позволяет оценить вероятность протекания процесса по тому или иному механизму, отбросив те из них, которые противоречат ее законам. Это способствует лучшему пониманию биологических процессов. [c.18]

    Отрицательные значения ДС или АР указывают на возможность прямою направления самопроизвольного протекания химической реакции знак плюс свидетельствует о том, что реакция может самопроизвольно протекать только в обратном направлении. Если АС и Р равны нулю, система находится в состоянии равновесия. Способность различных реакций к самопроизвольному протеканию сопоставляют друг с другом при стандартных условиях исходной смеси. За стандартные принимают условия, если концентрация исходных веществ п конечных продуктов в начале реакции равны [c.223]

    Химическая реакция не всегда доходит до конца , другими словами, исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаться условия для протекания реакции в про- тивоположном направлении. [c.134]

    В практике горного дела необходимо учитывать многие химические реакции. Так, воздействие влаги на каменный уголь, хранящийся на воздухе, может привести к самовозгоранию. Поэтому при создании многих промышленных процессов необходимо знать условия и направление протекания тех или иных химических реакций. Как и все явления природы, химические реакции сопровождаются изменениями энергии, например выделением или поглощением тепла, излучением и т. п. Поэтому законы, определяющие течение химических превращений, связаны с законами превращения энергии. Эти законы составляют предмет особой науки — термодинамики. Ее приложение к химии называется химической термодинамикой. Основные законы термодинамики вытекают из многовековой практики человечества. Ее первый закон устанавливает невозможность создания машины, которая производила бы работу без затраты энергии —так называемого вечного двигателя первого рода. Второй закон термодинамики указывает на невозможность существования вечного двигателя второго рода, т. е. периодически действующей машины, которая производила бы работу за счет охлаждения окружающей среды. Такая машина могла бы, например, использовать неограниченные запасы энергии морей и океанов. [c.14]

    X имическая термодинамика — наука, изучающая переходы энергии из одной формы в другую при химических реакциях и устанавливающая направление и пределы их самопроизвольного протекания при заданных условиях. [c.93]

    Однако величина стандартной энергии Гиббса химической реакции AGt не может быть критерием направления или предела самопроизвольного протекания химического взаимодействия в условиях, [c.110]

    Чтобы правильно и сознательно составлять химические уравнения, нужно знать важнейшие условия протекания реакции (реакцию среды, концентрацию участвующих веществ, температуру, катализатор й т. д.) определить ее направление (и как полно она будет протекать) понимать сущность и значение химической реакции в технике и лабораторной практике уметь читать и писать как обычные, так и электронные формулы веществ. [c.227]

    Все химические реакции обратимы в том смысле, что в зависимости от условий они могут протекать как в прямом, так и в обратном направлении. Например, смесь азота и водорода реагирует с образованием аммиака. Последний, в свою очередь, частично распадается на исходные вещества. Эта обратимость, однако, не эквивалентна термодинамической обратимости. Реакция, обратимая термодинамически, должна как в прямом, так и в обратном направлении проходить через непрерывную последовательность равновесных состояний. С этой точки зрения химические реакции в обычных условиях их протекания принадлежат к числу необратимых процессов они совершаются самопроизвольно лишь в одном направлении, пока не будет достигнуто состояние термодинамического равновесия, называемое, применительно к химическим процессам, химическим равновесием. [c.123]

    Химическое равновесие сохраняется до тех пор, пока остаются неизменными условия протекания реакции. Изменение условий реакции нарушает химическое равновесие. Направление смещения химического равновесия зависит от условий, влияющих на скорость прямой или обратной реакции, а также от концентрации исходных веществ или конечных продуктов. [c.54]

    Химическая термодинамика изучает переходы химической энергии в другие формы — тепловую, электрическую и т. п., устанавливает количественные законы этих переходов, а также направление и пределы самопроизвольного протекания химических реакций при заданных условиях. [c.85]

    Е це в самом начале XIX в. Бертолле пришел к зaкJ[ючeнию, что направление (скорость) химической реакции определяется массой взаимодействующих веществ, их физическими и химическими свойствами и условиями протекания реакции. [c.6]

    Для предсказания равновесных концентраций в любых условиях реакции применяют термодинамические расчеты. Естественным направлением химических реакцйй является направление к минимуму энергии Гиббса. Величина, количественно характеризующая термодинамическую возможность протекания данной химической реакции, равная т. е. алгебраической сумме произведе- [c.245]

    Опыт показывает, что при протекании любой химической реакции при определенных внешних условиях (например, при постоянной температуре и постоянном общем давлении или же при постоянной температуре и постоянном общем объеме) рано или поздно наступает такое состояние, когда соотнощение между концентрациями продуктов реакции и исходных веществ становится постоянным, вполне определенным для данной температуры, и сохраняется таким до тех пор, пока не будет изменена температура. Подобное состояние соответствует состоянию устойчивого химического равновесия. При этом концентрации (или активности) реагентов (как исходных веществ, так и продуктов реакции) называются равновесными концентрациями (шш равновесньши активностями). При химическом равновесии реакции не останавливаются — они продолжают протекать как в прямом, так и в обратном направлении, однако изменение концентрации всех реагентов за счет протекания реакции в прямом направлении компенсируется изменением их концентраций вследствие протекания реакции в обратном направлении, т. е. химическое раинове-сие является динамическим. Состояние химического равновесия может достигаться различными путями можно ввести в систему только исходные вещества, или же только продукты реакции, или же произвольную смесь исходных веществ и прод>ктов реакции — в любом случае через некоторое время в результате протекания реакции н том или ином направлении концентрации реагентов достигнут равновесных значений. [c.68]

    Электрохимическая кинетика, однако, должна учитывать и такие факторы, которые типичны только для иее и ие играют какой-либо роли в условиях обычных химических реакций. Прежде всего ЭТО нотенциал электрода, оказывающий чрезвычайно сильное в.оз-действие не только на скорость, но и на направление протекания электрохимических реакций и далее на природу ее продуктов. Кро.ме нотенциала электрода на про гекание электрохимических реакций существенное влияние оказывает заряд электрода, который 1 нервом ирнближеинн можно оце)1ить но величине потенциала в прнведепнон шкале /I. И. Антропова. [c.291]

    Позднее, с открытием и исследованием электрической, лучистой, химТ1ческой и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе.законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества работы, которое необходимо затратить для осуществ- [c.178]

    Назвать схему и ее основные аппараты (рис. 10.4). Показать направление движения сырья, полупродуктов и продуктов. Указать условия протекания процессов в аппаратах 4—11). Перечислить основные принципы химической технологии, используемые в этом процессе. Написать реакции, протекающие в аппарате 12. Дать схему обезнреживапия отходящих газов в этом производстве. [c.172]

    При повышении температуры сульфидные пленкт1 становятся более пористыми, и при некоторой температуре, соответствующей пли близкой к экстремальной, скорость коррозии определяется в основном скоростью реакции железа с сероводородом. Поскольку указанная реакция является экзогермпчной, а условия ее близки к равновесным, то дальнейшее повышение температуры согласно принципу Ле Шателье способствует ее протеканию в обратном направлении, т. е. снижает скорость коррозии. Чем больше концентрация сероводорода, тем более высокая температура требуется, чтобы контролирующим фактором стала химическая реакция. [c.146]

    С[ орость образования реаг( 11та А, взятая со знаком минус, т. е. —при протекании химической реакции в желаемом направлении всегда положительна и равна скорости расходования указанного реагента. Поэтому, если записать условие (111,121) в виде [c.113]

    При изменении условий протекания реакции (температуры, давления, концентрации какого-либо из участвующих в реакции веществ) скорости прямого и обратного процессов изменяются неодинаково, и химическое равновесие нарушается, В результате преимущественного протекания реакции в одном из возможных направлений устананливается состояние нового химического равновесия, отличающееся от исходного. Процесс перехода от одного равновесного состояния к новому равновесию называется смещением химического равновесия. Направление этого смещения нодчиняется принципу Ле Шателье  [c.97]

    Расчет равновесных (теоретических) выходов целевых и побочных продуктов реакции, определение термодинамической устойчивости веществ и направления само- и несамопроизволь-ного протекания реакций в изучаемых условиях является одним из важнейших этапов при исследовании новых химических реакций, при проектировании промышленных химических установок, при подборе оптимальных по составу катализаторов и разработке математических моделей для управления химическими процессами. Равновесный состав смеси химических веществ можно определить экспериментально или рассчитать по термическим данным с привлечением данных по теплоемкостям, теплотам и энтропиям веществ, а также по величинам изменения энергий Гельмгольца и Гиббса. [c.206]

    В связи с вышеизложенным настоящее учебное пособие является дополнением к курсу органической химии, в котором рассмотрены основные промышленные процессы получения и превращения органических вещесть на примере конкретных нефтеперерабатьшаюших и нефтехимических предприятий Республики Башкортостан. Приведены основные химические реакции, технологические приемы и методы, лежащие в основе этих процессов, условия их протекания, объемы существующих производств, технологические схемы и основные направления использования получаемых продуктов. Материал расположен в соответствии с наиболее распространенными промышленными процессами получения основных классов углеводородов и их функциональных производных, а также их превращениями. [c.7]


Смотреть страницы где упоминается термин Условия протекания и направление химической реакции: [c.258]    [c.177]    [c.127]   
Смотреть главы в:

Повторим химию 1984 -> Условия протекания и направление химической реакции




ПОИСК





Смотрите так же термины и статьи:

Направление протекания реакции

Направление химических реакци

Реакции направление

Реакции условий

Реакция условия протекания

Условие химического

Химическая направленность

Химические направление

Химические реакции направление



© 2025 chem21.info Реклама на сайте