Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал незаряженной поверхности нулевого заряда

    В рамках понятия потенциал нулевого заряда Л. И. Антропов предложил разграничивать такие понятия, как нулевая точка флг и потенциал незаряженной поверхности ф5=о, ранее употреблявшиеся как синонимы. По Л. И. Антропову, потенциал незаряженной поверхности соответствует максимуму электро-капиллярной кривой ртути (или другого металла) и может изменяться для данного металла в зависимости от природы и концентрации веществ в растворе. Нулевая точка — это частное значение потенциала незаряженной поверхности, полученное в растворе не содержащем поверхностно-активных веществ и которое является константой, характерной для данного металла и данного растворителя. [c.21]


    Наряду с терминами нулевая точка и потенциал максимума электрокапиллярной кривой широко употребляются как их синонимы также потенциал нулевого заряда и потенциал незаряженной поверхности, что вносит большую путаницу в электрохимическую литературу. Для того чтобы избежать возможных недоразумений, Антропов предложил разграничить понятия нулевая точка и потенциал незаряженной поверхности, каждому из них присвоить свой символ и употреблять эти термины в соответствии с их содержанием оба понятия могут быть объединены общим названием потенциал нулевого заряда. Основанием для такого разграничения послужили следующие соображения. Потенциал максимума электрокапиллярной кривой ртути (или другого Металла) всегда отвечает ее незаряженной поверхности это значение потенциала целесообразно называть потенциалом незаряженной поверхности и обозначать как Ед=о. Положение максимума электрокапиллярной кривой и соответствующий ему потенциал для данных металла и растворителя меняются в широких пределах в зависимости от природы и концентрации веществ, присутствующих в растворе. В то же время частное значение потенциала незаряженной поверхности, полученное в растворе, не содержащем никаких поверхностно-активных частиц (кроме молекул растворителя), является константой, характерной для данного металла и данного растворителя это частное значение потенциала незаряженной поверхности целесообразно назвать нулевой точкой и обозначить как е . Нулевая точка и потенциал незаряженной поверхности находятся между собой примерно в таком же отношении, как равновесный и стандартный потенциалы электрода. Последний, как известно, представляет собой частный случай равновесного электродного потенциала Вг, который реализуется в растворе с активностями всех участников электродной реакции. [c.266]

    Как уже отмечалось, адсорбция органических соединений максимальна вблизи потенциала нулевого заряда электрода . Потенциалы нулевого заряда электродов из различных металлов заметно различаются между собой [105], следовательно, для электродов из металлов различной природы неодинаковы и потенциалы максимальной адсорбции. Наряду с другими факторами, зависящими от природы материала электрода, неодинаковая адсорбция органических деполяризаторов на различных электродах оказывает существенное влияние на протекание электродного процесса, поэтому Антропов [106] для сопоставления скоростей электродной реакции на электродах из различных материалов предлагает пользоваться значениями потенциалов, отнесенных к нулевым точкам соответствующих электродов (нулевыми точками металлов Антропов называет потенциал незаряженной поверхности электродов из этих металлов в растворах, не содержащих поверхностно-активных веществ). [c.40]


    Эффект специфической адсорбции наблюдается и на незаряженной поверхности металла, т. е. в тех условиях, когда обмен ионами между металлом и раствором отсутствует. Адсорбированные ионы и соответствующие противоионы образуют двойной электрический слой, расположенный в непосредственной близости к металлу со стороны раствора. Ориентированные около поверхности металла адсорбированные полярные молекулы (ПАВ, растворителя) также создают двойной электрический слой. Скачок потенциала, отвечающий двойному электрическому слою при незаряженной поверхности металла, называется потенциалом нулевого заряда (п. н. 3.). Его значение принято выражать по водородной шкале (табл. 26).  [c.475]

    Характерные зависимости —Аб° от Е, найденные описанным методом, приведены на рис. 2.7. Зависимости — АО от Е органических молекул и ионов экстремальны (т. е. имеется потенциал максимальной поверхностной активности Е данного органического вещества). Для алифатических соединений, диполи которых ориентированы при адсорбции положительным концом к незаряженной поверхности металла, потенциал Ет расположен отрицательнее потенциала нулевого заряда в чистом растворе фона %=о( т< %=о) Еще более отрицательно располагается Ет для органических катионов. Обратные закономерности характерны для адсорбированных диполей, ориентированных отрицательным концом к незаряженной поверхности электрода, и для органических анионов. [c.47]

    Изменение формы электрокапиллярных кривых при переходе от поверхностно-неактивного электролита (NaF) к растворам, содержащим специфически адсорбирующиеся анионы (С1 , Вг , 1 ), показано на рис. VH.9. Специфическая адсорбция анионов на незаряженной поверхности ртутного электрода проявляется в снижении электрокапиллярного максимума, а возникновение скачка потенциала между слоем специфически адсорбированных анионов и притянутыми к ним катионами — в сдвиге потенциала нулевого заряда в отрицательную сторону по сравнению с д=о в растворе NaF. Как видно из рис. УП.9, специфическая адсорбция гало- [c.175]

    Рассмотрим цепь из двух разнородных металлов М1 и Мг, каждый из которых погружен в раствор собственных ионов, взятых.в такой концентрации Со и Со", какая необходима, чтобы поверхность обоих металлов оставалась незаряженной. Как легко видеть, э.д. с. цепи будет тогда равна разности потенциалов нулевого заряда металлов М] и Мг. Величина этой э. д. с. зависит только от природы взятых металло.в, так как потенциал нулевого заряда представляет для каждого металла индивидуальную константу. Предположим теперь, что концентрация раствора со изменена до произвольного значения с. Электродный потенциал металла М1 в таком растворе станет более или менее положительным, смотря по тому, увеличилась или уменьшилась концентрация его ионов в сравнении с концентрацией со Это изменение потенциала электрода вызывается образованием двойного ионного слоя. Электродный потенциал металлу в растворе с произвольной ко.нценТрацией потенциалопределяющих ионов поэтому можно представить в виде суммы двух слагаемых. Одним из них 26  [c.26]

    Условия, при которых поверхность электрода остается незаряженной, проще всего можно реализовать и определить соответствующее аначение потенциала для жидких электродов — ртутного, амальгамного и т. д. Эти определения основываются на характерной особенности кривых зависимости пограничного натяжения от потенциала—так называемых электрокапиллярных кривых, проходящих через максимум, когда поверхность металла полностью свободна от избыточных электрических зарядов. Потенциал максимума электрокапиллярной кривой всегда будет отвечать состоянию незаряженной поверхности металла. На первый взгляд может показаться, что определенная выше нулевая точка , или потенциал нулевого заряда, должен совпадать с потенциалом максимума электрокапиллярной кривой. [c.28]

    Потенциал электрода влияет на заряд поверхности катода, изменяет условия адсорбции молекул. Органические вещества в большинстве своем малополярные и лучше адсорбируются на незаряженной поверхности в область потенциала нулевого заряда. Область адсорбции неорганических веществ, часто хорошо диссоциирующих в ионизирующих растворителях, определяется зарядом восстанавливаемого иона. Учет влияния заряда поверхности электрода на направление и скорость катодного процесса особенно важен для реакции гидродимеризации [18, 19]. [c.9]

    Равновесный потенциал металла Е =о (как обычно, отсчитанный по водородной шкале) в растворе собственных ионов с такой концентрацией Со, когда металл остается электрически незаряженным, называется потенциалом нулевого заряда. При концентрациях потенциалопределяющих ионов в растворе меньше Со поверхность металла несет отрицательный заряд и электродный потенциал будет ниже, чем потенциал нулевого заряда Когда концентрация [c.54]


    Гальваническую цепь можно составить, поместив электроды из одного какого-либо металла в более разбавленный и более концентрированный раствор соли этого металла. Э. д. с. такой цепи будет зависеть только от одного концентрационного слагаемого, поскольку разность потенциалов нулевого заряда, естественно, равна нулю, так как электроды одинаковы. Рассмотренные представления о потенциалах незаряженной поверхности металла впервые были высказаны А. Н. Фрумкиным в связи с истолкованием электро-капиллярных кривых. Так называются кривые, выражающие зависимость поверхностного натяжения ртути (или другого жидкого металла) от потенциала. В точке максимума электрокапиллярной кривой поверхность металла является незаряженной. Однако более детальное обсуждение электрокапиллярных кривых выходит за рамки настоящего курса. [c.55]

    Наряду с терминами нулевая точка и потенциал максимума электрокапиллярной кривой широко употребляются, как их синонимы, также потенциал нулевого заряда и потенциал незаряженной поверхности , что вносит большую путаницу в электрохимическую литературу. Для того чтобы избежать возможных недоразумений, автор предложил разграничить понятия нулевая точка (или потенциал нулевого заряда ) и потенциал незаряженной поверхности (или потенциал максимума электрокапиллярной кривой ), каждому из них присвоить свой символ и употреблять эти термины в соответствии с их содержанием. Основанием для такого разграничения послужили следующие соображения. Потенциал максимума электрокапиллярной кривой ртути (или другого металла) всегда отвечает ее назаряженной поверхности это значение потенциала целесообразно называть потенциалом незаряженной поверхности и обозначать как е о- Положение максимума электрокапиллярной кривой и величина отвечающего ему потенциала для данных металла и растворителя меняются в широких пределах в зависимости от природы и концентрации веществ, присутствующих в растворе. В то же время частное значение потенциала незаряженной поверхности, полученное в растворе, не содержащем [c.250]

    Изменение формы электрокапиллярных кривых при переходе от поверхностно-неактивного электролита (NaF) к растворам, содержащим специфически адсорбирующиеся анионы ( h, Вг , 1 ), показано на рис. 55. Специфическая адсорбция анионов на незаряженной поверхности ртутного электрода проявляется в снижении электрокапиллярного максимума, а возникновение скачка потенциала между слоем специфически адсорбированных анионов и притянутыми к ним катионами — в сдвиге потенциала нулевого заряда в отрицательную сторону по сравнению с =о в растворе NaF. Как видно из рис. 55, специфическая адсорбция галоидных ионов растет в ряду Е <С]--<Вг -<1 . Эту закономерность можно объяснить снижением энергии гидратации ионов по мере увеличения их собственного радиуса, в результате чего менее гидратированные ионы получают возможность ближе подойти к поверхности электрода, а это ведет к возникновению между анионом и металлом специфического притягательного взаимодействия. При достаточно отрицательных потенциалах анионы десорбируются и элект-рокапиллярные кривые в растворах, отличающихся только природой аниона, совпадают (рис. 55). [c.153]

    Выводы автора основаны в первую очередь на измерениях Грэма, в распоряжении которого был лишь галлий недостаточной чистоты. Измерения электрокапиллярных кривых и дифференциальной емкости, а также определение потенциала нулевого заряда, выполненные с галлием высокой степени чистоты (>99,9998%), привели, однако, к иным результатам [171—174]. При достаточно высоких отрицательных зарядах поверхности электрокапил-лярное поведение галлия действительно близко к поведению ртути разница между потенциалами, соответствующими одинаковым зарядам на обоих электродах, составляет 0,17 в. При смещении потенциала в положительную сторону наблюдается резкое возрастание дифференциальной емкости, которое в отличие от ртути не может быть объяснено специфической адсорбцией анионов. Причина его, по-видимому, заключается в изменении ориентировки адсорбированных диполей воды, которые по мере снижения отрицательного заряда поверхности поворачиваются своим отрицательным кислородным концом к поверхности галлия. Возможность такого изменения ориентировки привлекалась в случае ртути для объяснения появления горба на кривых дифференциальной емкости (гл. IV). Это явление, несомненно, сильнее выражено на поверхности галлия, что связано, по-видимому, с более сильной адсорбцией воды на незаряженной поверхности галлия по сравнению с поверхностью ртути. Более прочная адсорбция воды приводит также к заметным различиям между поведением анионов на обеих границах раздела. Так, ион СЮ " который положительно адсорбируется на ртути, обнаруживает отрицательную адсорбцию на границе раздела галлий/водный раствор. — Прим. ред. [c.135]

    Уравнение (500) позволяет рассматривать потенциал электрода в ф-щкале как меру заряда металла (интенсивности ионного двойного слоя ё ьм (г)) и как меру изменения ориентации полярных молекул растворителя на границе металл —электролит при переходе от нулевой точки к данному значению потенциала (разность величин ё ьм((11р1) и л- ьм((Ир1))- Полагают, что ориентация диполей растворителя на незаряженной поверхности металла мало зависит от его природы (дг ьм(й1р1) для всех металлов в водных растворах примерно одно и то же). Таким образом, если, например, для металла 1 и металла 2 [c.263]

    Распределение потенциала по теории Штерна показано на рис. 7.18. Как видно из рис. 7.18 а и в, в плотной части двойного слоя потенциал линейно изменяется от Е до >, а в диффузном слое — в соответствии с теорией Гуи — Чапмена. Если д > д , то распределение потенциала в двойном слое будет таким, как это показано на рис. 7.18, а. В точке нулевого заряда 9 = 0 и из последнего уравнения следует, что Е = , т. е. скачок потенциала между электродом и раствором обусловлен специфической адсорбцией ионов на незаряженной поверхности электрода (рис. 7.18,6). [c.235]

    При погружении ртутного электрода в указанные растворы поверхность ртути заряжается положительно или отрицательно. В том случае, когда ртутный электрод погружен в раствор (например, хлорида калия), не содержащий ионов ртути или каких-либо других окислителей, поверхность ртути, как уже упомина,тось выше, остается незаряженной и ртуть имеет потенциал нулевого заряда. Если сообщить этому электроду некоторое количество положительных зарядов извне, например от какого-либо источника тока, то, поскольку процесс ионизации рту 111 при малом заряде поверхности практически не происходит, все полученное электродом количество электричества пойдет на увеличение заряда новерхности [c.39]

    Известно, что потенциал нулового заряда бд=о отвечает незаряженной поверхности металла и, наряду с нормальным потенциалом е , является его важнейшей электрохимичесБ ой характеристикой [1]. Это дает основание для того, чтобы в ряде случаев, особенно при решении вопросов электрохимической кинетики, принять в качестве нуля при Отсчете потенциалов не потенциал какого-либо электрода сравнения, например, водородного, а потенциал нулевого заряда. В такой шкале, которую можно назвать приведенной шкалой потенциалов, любой потенциал <р будет представлять собой разность менеду потенциалом электрода в данных условиях и его нулевой точкой  [c.34]


Смотреть страницы где упоминается термин Потенциал незаряженной поверхности нулевого заряда : [c.391]    [c.458]    [c.100]    [c.69]    [c.19]    [c.25]    [c.113]    [c.113]    [c.269]    [c.730]    [c.36]    [c.37]   
Теоретическая электрохимия Издание 3 (1975) -- [ c.218 , c.266 , c.362 , c.411 , c.415 , c.498 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал нулевого заряда

Потенциал нулевой



© 2025 chem21.info Реклама на сайте