Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитропарафины кислот

    Линии I — азотная кислота Т1 — циркулирующий пропан III — пропан IV — нитропарафины на перегонку V — разбавленная азотная кислота. [c.126]

    Здесь, где эти обе таутомерные формы одновременно присутствуют, можно говорить о десмотропии. Хотя нитропарафины и образуют со щелочами соли, но они не являются настоящими кислотами. Нейтраля- [c.267]

    При воздействии галоидов на щелочной раствор первичных и вторичных нитропарафинов происходит ровное и быстрое замещение подвижного водорода нитросоединений на хлор или бром [22], аналогично тому, как этот атом водорода весьма легко реагировал с азотистой кислотой. [c.271]


    Ж. Действие минеральных кислот на нитропарафины [c.276]

    В 1894 г. Неф наблюдал, что при действии минеральных кислот на щелочные соли первичных и вторичных нитропарафинов образуются альдегиды или кетоны и закись азота [c.277]

    При нитровании н-бутана выход нитропродуктов составляет около 30% это означает, что 30% мол. азотной кислоты переведено в нитропарафин за один проход. [c.281]

    В наилучших условиях за. один проход через печь в нитропарафины переходит около 40% всей примененной азотной кислоты. Остаток превращается в окиси азота, из которых затем регенерируют азотную кислоту. [c.282]

    Невозможно превратить за один проход количественно всю азотную кислоту в нитропарафин,, из-за того что исходный углеводород и получаемый нитропарафин подвергаются частичному окислению, что приводит к образованию окиси азота, которая хотя и непригодна для нитрования, но может быть регенерирована снова в азотную кислоту. Продуктами окисления являются спирты, кетоны, альдегиды, кислоты, окись углерода и углекислота в различных количествах. [c.282]

    Этим путем удается перевести азотную кислоту почти до 90% в нитропарафин. Остаток представляют азот и закись азота, которые нельзя использовать для дальнейшего окисления. [c.282]

    При регенерации азотной кислоты из окиси азота оказывается возможным использовать ее для получения нитропарафинов почти на 90%. [c.289]

    Выход продуктов реакции (в %), получаемых в одинаковых условиях газофазного нитрования этана, пропана, н- и изобутана, приведен в табл. 9 3. Здесь же приведен также выход за проход, рассчитанный по азотной кислоте, который показывает, сколько получается нитропарафина, из 100 частей азотной кислоты за один проход через реакционный сосуд. При этом избраны не наилучшие условия нитрования однако из таблицы видно, как улучшается нитрование с повышением молекулярного веса углеводородов. [c.293]

    При работе с легкокипящими углеводородами без применения давления требуется, естественно, весьма длительное время для проведения реакции например, гексан кипятился с дымящей азотной кислотой в течение 6 дней с обратным холодильником. Нитропарафины гораздо легче растворимы в концентрированной кислоте, чем исз одный материал. Это обстоятельство объясняет предпочтительное образование ди-и полинитросоединений при таком методе нитрования углеводородов. [c.302]

    При длительном нагревании с кислотами первичные нитропарафины гидролизуются с образованием жирных кислот и гидроксиламина, причем выделяется азот, так как при нагревании гидроксиламина до 100° происходит распад его на воду и азот. [c.302]


    Известно, что первичные и вторичные нитропарафины растворяются в щелочах с образованием солей нитроновых кислот, тогда как третичные нитросоединения при этом не растворяются. При этом [c.311]

    Ниже приведена температура кипения (в ° С) некоторых нитропарафинов и изомерных им сложных эфиров азотистой кислоты. [c.314]

    Низкомолекулярные нитропарафины обладают также исключительной растворяющей способностью по отношению к нитро- и ацетилцеллюлозе особенно в смеси со спиртами, а также по отношению к простым и сложным эфирам целлюлозы (пропионовой и масляной кислот) и виниловым смолам. [c.317]

    Для получения упомянутых жирных кислот пригодны только первичные нитропарафины, вторичные же нитропроизводные при воздействии серной кислоты в условиях процесса осмоляются. Ввиду того, что при газофазном нитровании пропана и н-бутана наряду с первичными образуются также значительные количества вторичных нитросоединений, необходимо оба изомера предварительно разделить ректификацией. [c.338]

    В ходе дальнейшей переработки продуктов питроваппя используется способность питропарафинов растворяться в щелочи (образование ацн-формы). Таким путем удается отделить нитропарафины от непрореагировавшего углеводорода. Из водно-щелочного раствора продукты нитрования выделяются затем путем продувания через раствор углекислоты. Образовавшиеся прп нитровании в качестве побочных продуктов карбоновые кислоты остаются в растворе в виде натриевых солей. Mono-, дп- и полинитропроизводные разделяются далее перегонкой (рис. 73). [c.128]

    При перегонке питропарафинов небольшая добавка борной кислоты (0,1 —1,0%) сильно тормозит разложение. Относительно ядовитости низкомолекулярных парафинов мнения расходятся. Исследования показывают, что нитропарафины ядовиты и обращение с ними требует большой осторожности [32]. Нитрометан является сильным ядом для центральной нервной системы. Ядовитость увеличивается с длиной молекулы. [c.128]

    При обработке нитропарафнпов в щелочной среде окислителями первичные нитропарафины превращаются в альдегиды или карбоновые кислоты, а вторичные нитропарафины в кетопы [39]. [c.132]

    При действии на первичные нитропарафины концентрированных ще.яочей, кроме-образования солей нитроновых кислот, проходят также побочные реакции, ведущие к глубокому изменению исходного продукта. Особенно чувствителен к действию концентрированных ш,елочей нитрометан, который при действии концентрированных щелочей конденсируется с образованием метазоновой кислоты [15]. Этот процесс конденсации можно представить как присоединение молекулы нитрометана к двойной связи, углерод — азот ациформы другой молекулы нитрометана, сопровождающееся перегруппировкой и отщеплением воды. Метазоновая кислота является оксимом нитроацетальдегида  [c.268]

    Нитропарафины образуют ациформу путем мипрации водорода, связаиного с тем же атомом углерода, что и нитрогруппа заметное влияние на подвижность данного атома водорода оказывает нитрогруппа. То же самое проявляется также при действии нитропарафинов на азотистую кислоту и соединения, содержащее галогены или оксо-группы. [c.270]

    Третичные нитропарафины под действием азотистой кислоты не изменяются. Таким образом, при помощи приведенных выше реакций можно разделить хотя и в измененной форме мононитроцарафины трех различных типов. [c.270]

    В. Мейер и Вурстер [55] нашли, что при действии минеральных кислот на первичные нитропарафины образуются карбоновые кислоты и гидро-ксиламин. Из нитроэтана под действием серной кислоты получаются уксусная кислота и гидроксиламинсульфат [56], из нитрометана, как показал Р. Прейбиш, таким же образом получаются окись углерода и гидроксиламинсульфат [57]. [c.276]

    Согласно исследованиям С. Лнппинкотта и Хэсса [58] наиболее пригодной для этой цели оказалась 85%-ная серная кислота. Выход гидроксиламина и карбоновых кислот доходит до 90%. и даже выше. В США долгое время таким путем получали гидроксиламин. При обработке 85%-ной серной кислотой вторичные нитропарафины подвергаются осмолению. [c.276]

    В качестве про.межуточного продукта этой своеобразной реакции Бамбергер и Руст [59] обнаружили гидроксамовую кислоту, которая была получена ими в количестве всего 2% от теории. Однако, изменив условия проведения этой реакции между первичным нитропарафином и серной кислотой (применение безводной серной кислоты лри температуре 60°, выливание продуктов реакции на лед и нейтрализация кислоты известью), Липпинкотту и Хэссу [60] удалось получить гидроксамовую кислоту с выходом до 50% от теоретического. [c.276]

    Прямое нитрование газообразных нитропарафинов интересно по двум причинам с одной стороны, имеют значение доступность и цена исходных материалов — низкомолекулярных углеводородов и азотной кислоты с другой стороны, возможность превращения получаемых нигропарафинов в различнейшие алифатические полупродукты и товарные -вещества, представляющие огромный промышленный интерес. [c.278]

    Выход нитропарафина, вычисляемый по количеству применяемой азотной кислоты, увеличивается с повышением избытка углеводорода ВПЛОТЬ до молярного от1Ношениу углеводород азотная кислота, равного 14 1. Дальнейшее повышение избытка углеводорода не увеличивает выхода. [c.282]


    Однако, как показали исследования Р. Мак-Клири и Дегеринга [81], предположение об образовании низкомолекулярных нитропарафинов путем нитрования карбоновых кислот с последующим их декар-бо,ксилированием не оправдывается. При нитровании уксусной или изо-масляноп кислоты в условиях газофазного нитрования при 400—420 (молярное отношение карбоновая кислота концентрированная азотная кислота, равное 1,5 1) образуются толькО следы нитросоединений, а кислоты остаются без изменения. При аналогичной обработке нитроэтана или 1- и 2-нитропропана, или нитробутана низкомолекулярные нитропарафины также не образуются. Происходит только некоторая потеря нитропарафина с образованием углекислоты. [c.283]

    Замечание к уравнению 2. Что свободные радикалы реагируют с азотной кислотой с образованием нитропарафинов, ясно локазал Д. Калингерт, который сразу же получил из тетраэтилсвинца и из паров азотной кислоты, разбавленных углекислотой, нитроэтан [85]. Тетраэтилсвинец при 150° частично распадается на алкильные радикалы. [c.284]

    Р. Ивелл [86] недавно высказал мнение, что механизм реакции через радикалы неприемлем. Основанием такого заключения явился тот факт, что при нитровании этана вплоть до 27% образуется нитрометан, этиловый же радикал не распадается на продукт только с одним атомом углерода. Для объяснения факта появления низкомолекулярных нитропарафинов автор принимает образование продукта присоединения азотной кислоты и углеводорода, которьц может либо распадаться на спирт и низкомолекулярный нитропарафин, либо переходить в соответствующий целевой нитропарафин. [c.284]

    Лучшие результаты нитрования этана были получены при следующих условиях давление 7 ат, температура 455—470°, время пребывания 0,3—0,33 сек., отношение углеводорода азотная кислота равно 10 1. В Ыход при расчете на азотную кислоту составил около 33%. Приблизительно около 5% азотной кислоты переходит при этом в азот и в закись азота, а остальное количество в нитропарафины и окись азота, преврга-щаемую снова в азотную кислоту. [c.290]

    При нитровании двуокисью азота очень существенно, чтобы время контактации было продолжительным для достижения почти таких же выходов, как и при нитровании с парами азотной кислоты. Английские ученые, исследовавшие этот способ нитровация с промышленной точки зрения, считают его превосходным. При этом способе лу 1ше контролируется температура, процесс происходит циклично, т. е. окислы азота и неиспользованный парафиновый углеводород возвращаются обратно в реакцию. При нитровании пропана двуокисью азота при 360° и 10 ат давления продукт реакции содержит 20—25% нитрометана, 5—10% нитроэтана, 45—55% 2-нитропропана и 20% 1-нитропропана. Выход в расчете на пропан составляет 75—80% и свыше 90% в расчете на двуокись азота [108]. 2,2-динитропропана образуется в количестве 1% от yiMMbi нитропарафинов. [c.296]

    Газы нз аппаратуры, содержащие нитропарафины, избыточный парафиновый углеводород, воду, не прореагировавшую азотную кислоту, окись азота и небольшое количество альдегидов и кетонов (около 1 г м ), подвергают сильному охлаждению и при этом выпадают ннпропара-фииы. Жидкие продукты разделяются на два слоя. Нитропарафины промывают водой и перегоняют. [c.297]

    Лишь значительно позже этому открытию было уделено необходимое внимание в 1949 г. Хэсс и Александер [113] и в 1952 г. Бахман, Хэсс и Аддисон опубликовали подробные сведения о влиянии добавки кислорода на нитрование пропана и н-бутана азотной кислотой и двуокисью азота. При нитровании азотной кислотой с добавкой кислорода реакция превращения значительно ускоряется, но конеч-ный выход нитропарафинов сильно падает. Если же увеличить соотношение поверхности к объему реактора -или ввести водяной пар, то выход будет удовлетворительным по отнои1 нию к прореагировавшему углеводороду. При нитровании двуокисью азота добавка кислорода ускоряет. превращение и увеличивает выход. При этом время пребывания при нитровании можно значительно сократить. Добавка кислорода при нитровании с двуокисью азота благоприятно влияет на нитрование, чем при при- ленении азотной кислоты. [c.298]

    В то время как при температурах 115—120° с азотной кислотой удельного веса 1,155 (25%-ной) образуется еще очень мало нитропарафинов, при повышении температуры реакции до 140—150° выход нитоо-парафинов достигает 60% из расчета на израсходованный углеводород. Концентрация азотной кислоты не играет здесь решающей роли. Коновалов успешно нитровал, применяя также 13%-ную азотную кислоту (З дельный вес 1,075) при указанных температурах обычно требовалось [c.303]

    Если сопоставить выход нитропарафинов с количеством полученных азотсодержащих отходящих газов, то получим (считая азотную кислоту за 100%) 65% в виде питропарафинов 23% в виде регенерируемых окислов азота 12% в виде закиси азота и азота. [c.308]

    При перегонке нитроуглеводородов прибавление небольших количеств борной кислоты уменьшает их разложение. Водные щелочные растворы сильно пенятся, однако обладают лишь слабым моющим действием. Под действием углекислоты воздуха они постепенно разлагаются с выделением нитропарафина, поэтому при приготовлении таких растворов применяют избыток щелочи, чтобы избежать выделения нитросоединений в виде масла. [c.312]

    Спустя 5 месяцев после появления работы В. Мейера и Штюбера, Кольбе [140] обнаружил, что первичные нитропарафины образуются при реакции взаимодействия галоидпроизводных жирных кислот с ни- [c.314]

    Как показал Бамбергер [143], нитропарафины можно получить окислением первичных алифатических аминов. Браун и Шрайнер [144], л также Турстон и Шрайнер [145] разработали реакцию взаимодействия металлической соли ациформ нитропарафинов с галоидным алкилом, при которой образуются сложные эфиры нитроновой кислоты или нитропарафины  [c.315]

    Наиболее важная проводимая в промышленном масштабе реакция низкомолекулярных нитропарафинов состоит в соединении их с альдегидами и кетонами, особенно с формальдегидом для получения нитроспиртов. Нитроспирты могут быть восстановлены в аминоспирты или же путем получения сложных эфиров с органическими или неорганическими кислотами превращепы в ценные конечные продукты, имеюшие значение как растворители, мягчители или взрывчатые вешества. [c.321]

    Особенно пригодны нитропарафины в качестве растворителей для смеш-аиных эфир-ов уксусной и масляной кислот. Важ нейшим представителем смешанных эфиров целлюлозы является ацетат — бутират, в 1К0Т0р01М ацетилцеллюлозы в 2 раза больше, чем бутират целлюлозы. Такие эфиры неогнеопасны и по сравнению с ацетатами менее чувствительны к воде. Они могут широко применяться для внешней окраски [c.322]


Смотреть страницы где упоминается термин Нитропарафины кислот: [c.126]    [c.132]    [c.276]    [c.281]    [c.289]    [c.318]    [c.338]    [c.338]    [c.351]   
Нитрование углеводородов и других органических соединений (1956) -- [ c.217 ]

Нитрование углеводородов и других органических соединений (1956) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Ж- Действие минеральных кислот на нитропарафины

Нитропарафины

Этиловый эфир бензойной кислоты. Бензонафтол. Салол. Диметилфталат. Диэтилфталат. Дибутилфталат. Метиловый эфир паратолуолсульфокислоты Нитро-, диазо- и аминосоединения Алифатические нитросоединения Нитропарафины



© 2025 chem21.info Реклама на сайте