Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотистая

    Алюмоникельмолибденовый катализатор менее активен-в реакциях насыщения, непредельных соединений, зато более активен в отношении насыщения ароматических углеводородов (10—50% по сравнению с АКМу и гидрирования азотист соединений (на 10— 18% выше, чем с АКМ). Вместе с тем он быстро теряет высокую первоначальную активность.  [c.13]

    Эту стадию процесса проводят для разложения кислородных и азотистых соединений (главным образом фенолов н гетероциклических азотистых соединений) среднего масла А, полученного гидрогенизацией в жидкой фазе, так как эти гетероциклические примес Л легко вызывают отравление катализатора стадии расщепления. Расщепления с одновременно протекающей структурной изомеризацией при этом практически не происходит. Однако некоторые количества низкокипящих углеводородов все же неизбежно образуются одновременно происходят изменение содержания фенолов и образование аммиака в результате деструктивной гидрогенизации азотистых соединений, а остаточное количество сернистых соединений, присутствующих в среднем масле, превращается [c.39]


    Ароматические углеводороды гидрируются, превращаясь в нафтеновые углеводороды, а водород взаимодействует с гетероатомами сернистых и азотистых соединений, образуя соответственно сероводород и аммиак. В результате гидроочистки получают бесцветные, светостойкие жидкие продукты, более пригодные для дальнейшей химической переработки. Из высокопарафинистых исходных фракций при такой очистке получают пригодное для промышленного использования парафиновое сырье. [c.15]

    Удовлетворительного объяснения механизма этой реакции еще не имеется. Выход нитросоединения и эфира азотистой кислоты в большей степени зависит от примененного иодида и соли азотистой кислоты. Кроме соли серебра, аналогично ведет себя также нитрит ртути [138]. Нитрит калия при реакции с алкилиодидами дает исключительно эфиры азотистой кислоты [139]. Алкилбромиды или хлориды мало или совсем непригодны для проведения данной реакции. [c.314]

    Топлива, полученные из нефти, содержат химические соединения, которые ухудшают их качество. К таким соединениям относятся кислородные, сернистые, азотистые и др. Кроме того, в топливах (особенно термического крекинга) могут содержаться непредельные углеводороды, значительно снижающие их химическую ста- [c.9]

    Стабильность. Под стабильностью топлива понимается способность его сохранять неизменными свои физико-химические свойства в условиях хранения, транспортировки, заправки и прокачки по топливной системе летательного аппарата. Все нефтяные топлива являются нестабильными. Нестабильность проявляется в том, что составные части их (углеводороды, сернистые, кислородные и азотистые соединения) окисляются, полимеризуются и уплотняются. Скорости процессов окисления, полимеризации, уплотнения зависят от качества топлива и от внешних условий. [c.27]

    Под давлением 15 ат удаляют следы аммиака (образующегося при предварительном гидрировании в результате разложения азотистых соединений), после чего газ поступает на установку низкотемпературного фракционирования по Линде для выделения этана, пропана и бутанов. [c.43]

    При воздействии галоидов на щелочной раствор первичных и вторичных нитропарафинов происходит ровное и быстрое замещение подвижного водорода нитросоединений на хлор или бром [22], аналогично тому, как этот атом водорода весьма легко реагировал с азотистой кислотой. [c.271]

    Образование эфиров азотистой кислоты по реакции В. Мейера объясняется предположением, что нитрит серебра может реагировать в двух изомерных формах Ад — N02 и Ад—ОК — О. [c.314]


    Кислородные соединения. В отличие от других неуглеводородных примесей кислородные соединения постоянно накапливаются в топливе за счет окисления нестабильных углеводородов, сернистых, азотистых и первичных кислородных соединений. По скорости окислительных процессов судят о качестве топлив. Кислородные соединения, содержащ,иеся в топливах, можно разделить на органические кислоты, простые и сложные эфиры и смолисто-асфальтовые вещества. [c.17]

    Ниже приведена температура кипения (в ° С) некоторых нитропарафинов и изомерных им сложных эфиров азотистой кислоты. [c.314]

    Следующим требованием, предъявляемым к чистоте парафина, является отсутствие в нем веществ, тормозящих окисление, как, например, азотистых или сернистых соединений, фенолов и т. н. Эти вешества должны быть предварительно удалены, чтобы содержание серы и фенола не превышало 0,05%. [c.447]

    Коррозионные свойства. Углеводородная часть современных нефтяных авиационных топлив практически не вызывает коррозии металлов и сплавов. Коррозионная агрессивность обусловливается главным образом присутствием в топливе таких веществ, как сера, сернистые соединения, органические кислоты, вода, азотистые соединения и др. Коррозионная агрессивность топлива зависит от его стабильности. Малостабильные топлива, как правило, более коррозионно активны. Коррозионные свойства оцениваются по следующим показателям испытанию на медной пластинке, количеству серы и сернистых соединений в топливе, органической кислотности. [c.31]

    Азотистых соединений в авиационных топливах, особенно в легких, очень мало, так как основная их часть сосредоточивается в тяжелых фракциях нефти. Это, как правило, гетероциклические соединения с атомом азота в одном или нескольких кольцах. Чаще всего встречаются гомологи пиридина (1), хинолина (2), пиррола (3), индола (4)  [c.17]

    Азотистые соединения в реактивных топливах содержатся в количествах не более 0,05- 0,1 % и практически не оказывают существенного влияния на термоокислительную стабильность топлива. Большое влияние на термостабильность топлива оказывают вода и микрозагрязнения. Удаление их из топлива всегда приводит к повышению его термоокислительной стабильности. [c.114]

    После разработки реакции сульфохлорирования в Германии начались опыты по применению, кроме когазина, и нефтяных фракций. Выяснилось, что в таких фракциях имеются флегматизаторы (ингибиторы), которые делают сульфохлорирование практически невыгодным. Только благодаря каталитическому восстановлению при высоком давлении, которое в первую очередь полностью разрушает азотистые соединения, начинается до некоторой степени спокойное течение реакции. Кропелин с сотрудниками снова обстоятельно занялся в последнее время проблемой флегматизаторов (ингибиторов). Они нашли, что пиридин, изохинолин, анилин и кумарон оказывают тормозящее действие. Интересно отметить, что пиридин сначала даже ускоряет реакцию сульфохлорирования и только хлорпиридин тормозит ее. [c.371]

    Полученные путем перегонки мазута масляные дистилляты и остатки состоят из смеси углеводородов различных классов и содержат кислородные, сернистые и азотистые соединения. [c.136]

    М—ОН) или азотистой (0 = N—ОН) кислоты. Аналогии в строении должна соответствовать и аналогия в свойствах, сказывающаяся в том, что все три соединения обладают кислотными свойствами, т. е. способны отщеплять в водных растворах атом во-до1)ода гидроксильной группы в виде Н+-иона. [c.242]

    Основные реакции азотсодержащих соединений. Удаление азотистых соединений из бензиновых, керосиновых и дизельных фракций имеет весьма важное значение в повышении качества последних. Катализаторы риформинга весьма сильно дезактивируются при работе на сырье с любым содержанием азотистых соединений как основного, так и неосновного характера. Наличие азотистых соединений в керосиновых и дизельных фракциях является причиной низкой стабильности цвета и при хранении вызывает образование нерастворимых осадков. [c.10]

    Гидрогенолиз азотистых соединений сопровождается выделением свободного аммиака. В связи с малой изученностью состава исходных азотистых соединений можно представить примерные схемы возможных реакций в процессе гидрирования [4]  [c.10]

    Взаимодействием высокохлорированного твердого или мягкого парафина со спиртовым раствором аммиака и автоклаве при 150° или с сульфтидратом натрия получают азотистые или сернистые соединения, не содержащие или содержащие весьма незначительные количества остаточного хлора в чрезвычайно стабильной форме (хлор, связанный с радикалом винила). Эти соединения могут быть использованы для самых различных технических целей. [c.250]

    Алкилирование гетероциклических азотистых соединений продуктами хлорирования нефти, когазина и вазелинового масла для производства фунгисидов. см.  [c.263]


    Нитропарафины образуют ациформу путем мипрации водорода, связаиного с тем же атомом углерода, что и нитрогруппа заметное влияние на подвижность данного атома водорода оказывает нитрогруппа. То же самое проявляется также при действии нитропарафинов на азотистую кислоту и соединения, содержащее галогены или оксо-группы. [c.270]

    Прежде всего необходимо разобрать поведение первичных и вторичных нитропарафияов под действием азотистой кислоты, так как на основании этого можно вывести заключение о природе нитросоединений. [c.270]

    При обработке первичного нитропарафипа азотистой кислотой в момент выделения путем подкисления серной кислотой смеси его> с нитритом образуется нитро-нитрозосоединение, которое тотчас же перегруппировывается в нитроловую кислоту  [c.270]

    Третичные нитропарафины под действием азотистой кислоты не изменяются. Таким образом, при помощи приведенных выше реакций можно разделить хотя и в измененной форме мононитроцарафины трех различных типов. [c.270]

    Реакция, вероятно, будет протекать следующим образом КНН-+N02 -> R + HN02. Но все же В этом отношении N02 менее активна, чем ОН-радикал. К этому еще следует добавить, что азотистая кислота разлагается с образоваиием окиси аэота, являющегося ингибитором для реакции. Таким образом, реакция нитрования должна быть формулирована как реакция присоединения алкильного радикала и ЫОг-радикала R -N02 RN02. [c.285]

    При этом происходит также образование алкилнитритов, которые являются сложными эфирами азотистой кислоты и изомерны истинным Н ит1росое ди ишиям. Так, иапример, таз амилиодида и итрита серебра получают иитропентан и амилнитрит  [c.314]

    При прямом нитровании парафиновых углеводородов получаются истинные нитросоединения, в которых имеется связь С — N. При этом можно использовать любые из методов (при помоши азотной кислоты или окислов азота), описанные в главе Нитрование... . Изомерный нитропарафинам эфир азотистой кислоты, который всегда получается в большем или меньшем количестве в качестве побочного продукта при синтезе нитропарафинов по Мейеру, при прямом нитровании парафиновых углеводородов азотной кислотой в продуктах реакции отсутствует. Это легко доказать тем, что если обработать продукты прямого нитрования парафинов разбавленными минеральными кислотами окислы аэота не выделяются, в то время как эфиры азотистой кислоты в этих условиях очень быстро распадаются на спирт и окислы азота. Однако при газофазном нитровании парафиновых углеводородов при 400° могут [c.559]

    Отделение нитросоединения от изомерного эфира азотистой кислоты легко достигается ректификацией, благодаря тому что указанные эфиры эбычно кипят значительно ниже н.итр000 е ди нен1ий, что особенно проявляется в случае низкомолекулярных членов ряда. [c.314]

    Смеси парафиновых, нафтеновых и ароматических углеводородов, содержащиеся в нефти или в ее фракциях, а также азотистые, серлистые и кислородные соединения, содержащиеся частично в форм г гетероциклических соединений, и прочие примеси почти непригодны для сульфохлорирования. Лишь после очистки, например гидрированием под высоким давлением, которое превращает азот азотистых соединений в аммиак, серу сернистых соединений в сероводород, кислород кислородных соединений в воду, а ароматические углеводороды в нафтены, обраауется смесь углеводородов, которая более пригодна для сульфохлорирования. [c.374]

    При сульфохлорировании неочищенных нефтяных потнов протекает заметное хлорирование в углеродной цепи. Но и после очистки нефтяных погонов, например гидрированием под высоким давлением, продукты сульфохлорирования могут быть использованы только для немногих специальных целей, так как по составу о и очень неоднородны и содержат значительное количество хлора в углеродной цепи. Хотя при каталитическом гидрировании над сульф-идными катализаторами (которое для нефти необходимо проводить при более высоких температурах и с меиьшей производительностью катализатора, чем для когЭ зина) азотистые соединения разлагаются с образованием аммиака, а сернистые соедииения с образованием сероводорода и наиболее вредные вещества, вызывающие обрыв цепной реакции, таким образом удаляются, тем не менее реакция сульфохлорирования протекает более вяло, чем для когазина, очищенного гидрированием. [c.397]

    Уорстолл, изучавший нитрование парафиновых углеводородов дымящейся азотной кислотой при атмосферном давлении, нашел, например, что прп этом в качестве единственного продукта монозамещения получается 1-нитропарафин [65]. Подтверждением этого служила нитроловая реакция (красное окрашивание с едкими нгелочам и), которую давали продукты нитрования при обработке азотистой кислотой, и их восстановление железными опилками и уксусной кислотой в первичные амины . [c.560]

    Физико-химические свойства углеводородов, а также содержание сернистых, азотистых, кислородных соединений зависит от месторождения нефти. Имеются, например, малосернистые, сернистые, нафтенистые, парафинистые нефти и др. [c.6]

    Очистка серной кислотой применяется для удаления ряда ненасыщенных углеводородов, смолистых, азотистых и сернистых-создинений. Очистка щелочью используется для удаления кислородных соединений, сероводорода, меркаптанов, а также для удаления серной кислоты и продуктов ее взаимодействия с углеводорб-дa ш. [c.10]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Однако электролиз в этом случае продолжается очень долго (6—8 ч). Поэтому, если не требуется особенно большая точность, предпочитают вести его в сернокислом растворе, прибавляя к нему в качестве деполяризатора некоторое количество HNO3. Азотная кислота не должна содержать примеси азотистой кислоты, замедляющей выделение меди и вызывающей образование осадка СиО. Удалить HNO2 можно предварительным кипячением азотной кислоты или прибавлением к ней небольшого количества мочевины 0(NH2)2, восстанавливающей азотистую кислоту до азота. [c.440]

    Ход определения. Навеску сплава (1 г) растворяют в смеси 100 мл разбавленной (1 4) H2SO4 с 1 мл разбавленной (1 1) HN0.1. По окончании растворения навески к раствору прибавляют несколько миллилитров 10%-ного раствора сульфата гидразина (N2H4-H2SO4) для восстановления азотистой кислоты и окислов азота, мешающих осаждению меди на катоде. Разбавляют раствор до 150 мл, нагревают до 60—65° С и подвергают внутреннему электролизу. Для этого опускают в раствор электродную пару, состоящую из цинкового анода и платинового сетчатого катода , собранную, как показано на рис. 63. Предварительно тщательно зачищают контакты анода и катода, поверхность цинкового анода и хорошо закрепляют их в соответствующих клеммах. [c.451]

    А вообще мне хотелось написать книгу о кирпиче, т. е. о ТРИЗ на примере возможного развития обыкновенного кирпича. Все законы развития технических систем приложимы к кирпичу. Скажем, переход к бисистеме кирпич из сдвоенного вещества. С позиций ТРИЗ тут ясно различимо техническое противоречие надо ввести второе вещество (закон есть закон ) и нельзя вводить второе вещество (система усложнится). Выход — использовать вещество из ничего , пустоту, воздух. Кирпич с внутренними полостями вес уменьшился, теплоизоляционные качества повысились. Что дальше Увеличение степени дисперсности полостей от полостей к порам и капиллярам. Это уже почти, механизм. Пористый кирпич, пропитанный азотистым материалом (по а. с. 283264), вводят в расплав чугуна кирпич медленно нагревается, происходит дозированная подача газообразного азота. Или пористый кирпич пропускает газ, но задерживает открытое пламя (а. с. 737706) и воду (а. с. 657822). И снова переход к бисистеме можно заполнить капилляры частично (т. е. снова ввести пустоту ), тогда появится возможность гонять жидкость внутри кирпича (внутреннее покрытие тепловых труб). [c.115]

    Материал для исследования получался нами фракционированием нефтей Грузии из различных скважин. Фракции 60—95°, 95-122°, 122—150° и 150—200° не давали качест-векпу1я реакщпо иа непредельные углеводороды, т. е. не реагировали И1Г с бромной водой, ни со слабым щелочны.м раствором перманганата калня. Исследуемые фракции промывались 73%-НОЙ серной кислотой, 10%-ным раствором щелочи, затем водой, сушились над хлористым кальцием и перегонялись в присутствии металлического натрия. Предварительная обработка бензино-лигроиновых фракций 73%-ной серной кислотой, щелочью и затем перегонка над металлическим натрием преследовали цель освободиться от нежелательных сернистых, кислородных и азотистых соединений, которые в качестве примесей могли присутствовать в исследуемых фракциях. Если бензино-лигроииовьте фракции не подвергаются предварительно такой обработке, то указанные выше неуглеводородные компоненты будут удаляться во время деароматизации фракции и последующей за ней промывкой щелочью и перегонкой над металлическим натрием. [c.151]

    Материал для исследования получался нами фракционированием норийской нефти из скважин №№ 22, 23, 25, 27 н 31. Выделенные фракции 60—95°, 95—122°, 122—150° и 150— 200° давали отрицательную реакцию на непредельные углеводороды. С целью удаления некоторых сернистых, азотистых и кислородных соединений, присутствующих в качестве примесей в исследуемых фракциях, они подвергались обработке 73%-НОЙ серной кислотой, 10%-пым раствором щелочи и водой, сушились над хлористым кальцием, а затем перегонялись в присутствии металлического натрия. [c.166]

    Азотистые соединения в бензинах представлены пирродами, пиридинами и в высококипящих бензиновых фракциях-— хиноли-нами. Возможно присутствие и иных соединений, попадающих в бензины из стадии первичной переработки нефти. Содержание азотистых соединений в прямогонных бензинах невелико, а во вторичных — в 5—10 раз выше, чем в прямогонных. [c.25]

    Азотистые соединения превращаются на катализаторах рифор -минга в аммиак, который адсорбируясь, понижает кислотность катализатора, что приводит к подавлению реакций изомеризации, дегидроциклизацни и гидрокрекинга. При своевременном обнаружении и ликвидации причин повышения содержания азотистых соединений в гидроочищенном сырье риформинга активность катализатора может быть восстановлена. [c.25]


Смотреть страницы где упоминается термин Азотистая: [c.108]    [c.270]    [c.18]    [c.112]    [c.81]   
Курс аналитической химии Том 1 Качественный анализ (1946) -- [ c.381 ]

Основы химии Том 2 (1906) -- [ c.157 , c.173 , c.200 , c.201 , c.210 ]




ПОИСК







© 2025 chem21.info Реклама на сайте