Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы надпероксиды

    Свойства пероксидов, надпероксидов и озонидов щелочно-земельных металлов имеют много общего со свойствами щелочных металлов (см. гл. 10 н 11). [c.264]

    Все, щелочные металлы весьма энергично реагируют с кислородом. При избытке кислорода литий образует оксид Li20 (с небольшой гримесью пероксида Li202), натрий — пероксид МпгОг, а К, Rb, s — надпероксиды ЭО2. Реакция [c.302]


    При воздействии озона на щелочные металлы можно получить озониды — неустойчивые соединения, которые разлагаются на надпероксиды и кислород  [c.427]

    Чаще пероксид водорода проявляет окислительные свойства. Пероксиды и супероксиды (надпероксиды) щелочных металлов применяют для регенерации кислорода в подводных лодках и изолирующих противогазах, так как они являются не только источниками кислорода, но и поглощают вредные примеси  [c.134]

    Свойства. Щелочные металлы Ыа, К, КЬ, Сз — легкоплавкие металлы. Ы, Ыа, К, КЬ имеют серебристо-белую окраску, а Сз — золотисто-желтую, не такую яркую как у золота, но вполне заметную. Находящиеся под керосином щелочные металлы бывают покрыты слоем нз оксидов и пероксидов (литпй — смес1 .ю нитрида и оксида) . На воздухе они легко окисляются (КЬ и Сз — самовозгораются), реакция ускоряется под действием влаги в совершенно сухом кислороде при комнатной температуре натрий не окисляется н сохраняет блестящую поверхность. Литий приблизительно такой же мягкий, как свинец, натрий — как воск. К, КЬ и Сз — еще мягче. Щелочные металлы обладают высокой сжимаемостью, электро- и теплопроводностью. Литий — самое легкое из твердых веществ, существующих прп комнатной температуре. Некоторые свойства щелочных металлов указаны в табл. 3.1 Работа со щелочными металлами требует боль иой осторожно сти,. гак как они легко загораются, бурно реагируют с водой многими другими веществами. При длительном хранении в керо сине калий покрывается слоем надпероксида, который при разре зании металла может с ним интенсивно реагировать, вызывая загорание и разбрызгивание горящей массы. [c.299]

    Производные радикала О называются надпероксидами, они известны для наиболее активных щелочных металлов (К, Rb, s). [c.341]

    Пероксиды и надпероксиды щелочных металлов являются сильными окислителями. Горючие вещества (алюминиевый порошок, древесные опилки и др.), будучи смешанными с НагОг, дают яркую вспышку при поджигании. Реакцию можно вызвать также добавлением небольшого количества воды или H2SO4. [c.302]

    Пероксиды, надпероксиды и полуторные оксиды. Пероксиды М2О2 образуют все щелочные металлы известны также пероксиды МО2 цинка, кадмия, кальция, стронция н бария. [c.197]

    Производные радикала О2 называются надпероксидами они известны для наиболее активных щелочных металлов (К, Р Ь, Сз). Над-пероксиды образуются при прямом взаимодействии простых веществ К + 02=К02. [c.315]


    Взаимодействие самых активных из щелочных металлов — калия, рубидия и цезия — с кислородом приводит к образованию надпероксидов общей формулы ЭО - Это также ионные соединения с сильно выраженными окислительными свойствами. Их взаимодействие с водой и кислотами протекает с выделением Н2О2 и 0 . [c.66]

    Химические свойства Кислород обладает высокой химической активностью Он взаимодействует непосредственно со всеми простыми веществами, кроме галогенов, благородных металлов Ад, Аи, Р1 и благородных газов, образуя оксиды Наиболее активные щелочные металлы (К, КЬ, Сз) образуют при этом надпероксиды ЭОг, а Ма — пероксид МагОг Кислород окисляется только при взаимо действии с р2 [c.350]

    Платина реагирует при нагревании с белым фосфором, серой, кремнием, мышьяком, бором и углеродом. Она образует сплавы со свинцом и оловом. Особенно опасно плавить и прокаливать в платиновой посуде гидроксиды, нитраты, карбонаты, пероксиды, надпероксиды и озониды щелочных металлов. Нельзя допускать контакта с платиной 8102 в присутствии восстановителей (активированный уголь, газ пламени горелки и т.п.) и плавить в платиновых тиглях стекло выше 900 °С. [c.27]

    Работа со щелочными металлами требует большой осторожности, так как они легко загораю.тся, бурно реагируют с водой и многими другими веществами. При длительном хранении в керосине калий покрывается слоем надпероксида, который при разрезании металла может с ним интенсивно реагировать, вызывая загорание и разбрызгивание горящей массы. [c.299]

    Такие электроны в растворе — хорошие восстановители. Например, в этих растворах легко получить чистые образцы надпероксидов щелочных металлов  [c.226]

    О2 и озониды, содержащие О3. Ионы О2 и Оз можно рассматривать как молекулы Оа и Оз, присоединившие электрон, который занимает разрыхляющую орбиталь. Поэтому надпероксиды и озониды образуют только наиболее активные щелочные металлы К, Rb, s (получены также ЫаОг и NaOs, но эти вещества всегда получаются со значительной примесью пероксида натрия). [c.438]

    При сг-ораиии при атмосферном давлении литий образует только оксид Ь1зО натрий дает пероксид натрия ЫзаОз, калий, рубидий и цезий образуют надпероксиды МО2. Пероксид натрия при повышении давления и температуры может дальше реагировать с кислородом, образуя ЫаОз. Для натрия и элементов подгруппы калия известны также озониды МО.,. С увеличением размера иона щелочного металла устойчивость надпероксидов и пероксидов повышается. [c.254]

    Следует иметь в виду, что при длительном хранении в керосине калий покрывается слоем надпероксида, поэтому при разрезании металла надпер-оксцд может иитеисивно реагировать с металлом, что может вызвать загорание и разбрызгивание горящей массы. Остатки щелочных металлов после рабо- [c.319]

    Все щелочные металлы весьма энергично реагируют с кислородом. При избытке кислорода литий образует оксид UiO (с н льшой примесью пероксида UjOi), натрий - пероксид NaiOj, а К, Rb, s - надпероксиды ЭОг. Надпероксид натрия получается по реакции, протекающей прн 50Ю °С и давлении 30 МПа [c.322]

    Соединения. Кислород образует четыре типа соединений оксиды, содержащие О , пероксиды, имеющие пероксогруппу Ч)-0-, надпероксиды, в структуре которых есть ион О2. и озониды, содержащие 05. Ионы 05 и Оэ можно рассматривать как молекулы О2 и О], присоединившие электрон, который занимает разрыхляющую орбиталь. Поэтому надпероксиды и озониды образуют только наиболее активные щелочные металлы К, НЬ, Са (получаемые N80 и N803 всегда содержат значительную примесь пероксида натрия №202). [c.432]

    В узлах ионных кристаллических решеток пероксидов щелочных металлов М2О2 и надпероксидов МО2 находятся перок-сид-ионы Ог и надпероксид-ионы О2 известны и ионные озо-ниды состава МО3. Все эти соединения легко распадаются при нагревании с выделением кислорода, а также подвергаются гидролизу  [c.196]

    В узлах ионных кристаллических решеток пероксидов щелочных металлов М2О2 находятся пероксид-ионы Ог (или О—О ), а в узлах решеток надпероксидов МО2-надпероксид-ионы О2 (или О—О ). Кроме того, для К, ЯЬ и Сз получены озониды МО3, содержащие озонид-ионы [c.164]

    Степень окисления элементо в.Среди формальных понятий химии важнейшим является понятие степени окисления. Степень окисления — воображаемый заряд атома элемента в соединении, который определяется из предположения ионного строения вещества. Определение степеней окисления элементов основано на следующих положениях 1) степень окисления кисло1Х)да принимается равной -2. Исключение составляют пероксидные соединения (NaaOa), где степень окисления кислорода -1. А в надпероксидах (КОг) и озони-дах (КОз) окислительное число кислорода соответственно -1/2 и -1/3. Наконец, во фторидах кислорода степень окисления кислорода положительна например, в OF2 она равна +2 2) водород имеет степень окисления +1. Только в солеобразных гидридах типа NaH его степень окисления равна -1 3) степень окисления щелочных металлов равна +1 4) степень окисления атомов, входящих в состав простых веществ, равна нулю 5) в любом ионе алгебраическая сумма всех степеней окисления равна заряду иона, а в нейтральных молекулах эта сумма равна нулю. [c.55]


    Пероксидные соединения. Щелочные металлы образуют перо- ксидные соединения — соединения, в которых имеются химические связи кислород — кислород. Склонность к образованию таких соединений и их устойчивость возрастают от лития к цезию. Щелочные металлы образуют пероксиды состава М2О9 и надпероксиды МО2, где М — щелочной металл. [c.246]

    При окислении на воздухе щелочные металлы образуют различные кислородные соединения-, литий — оксид Ь1гО, натрий — пероксид КагОг, а калий, рубидий и цезий — надпероксиды КО2, КЬОг и СзОг. Металлы ПА-группы с кислородом образуют оксиды МО. [c.114]

    В узлах ионных кристаллических решеток пероксидов щелочных металлов М2О2 и надпероксидов МО2 находятся пероксид-ионы О2 и надпероксид-ионы О2 известны и ионные озониды состава МО3. Все эти соединения легко распадаются при нагревании с выделением кислорода, а также подвергаются гидролизу с образованием гидроксид- и гидропероксид-ионов. Пероксиды, надпероксиды и озониды — сильные окислители. Как и щелочные металлы, щелочноземельные образуют не только оксиды, но также пероксиды МО2 и надпероксиды М(02)2, которые при обработке разбавленными растворами кислот на холоду выделяют пероксид водорода, а при нагревании — кислород. [c.115]

    Получение свободных щелочных металлов (1009). Очистка лочных металлов (1014). Гидриды щелочных металлов (И Моноксиды щелочных металлов (1025). Диоксиды (перокс щелочных металлов (1030). Диоксиды (надпероксиды) ще ных металлов (1031). Гидроксиды щелочных металлов (И Сульфиды, селениды и теллуриды щелочных металлов (К Нитрид лития (1035). Фосфиды, арсениды, антимониды и мутиды щелочных металлов (1036). Фосфиды щелочных таллов (1036). Арсениды щелочных металлов (1037). Ант ниды щелочных металлов (1040). Висмутиды щелочных ме лов (1041). Двухзамещенные ацетилиды (карбиды) щело металлов (1042). Однозамещенные ацетилиды щелочных таллов (1043). Фениллитий (1045). Силициды и герма щелочных металлов (1046). [c.1056]

    Nb20s или Ta20s нагревают с карбонатом или гидроксидом щелочного металла. Можно также применять пероксиды и надпероксиды щелочных металлов, а для особо важных опытов и оксиды М2О. В зависимости от соотношения реагентов, температуры нагревания и дальнейшей обработки получают соли различного состава. В системах оксид щелочного металла — пентаоксид имеется большое число фаз. Соединения с большим содержанием щелочного металла гигроскопичны. [c.1573]

    С помощью краун-эфиров удается растворять в органических растворителях обычно нерастворимые в них соли щелочных металлов. Например, становится возможным использовать для окисления в органическом растворителе надпероксид калия КО2, содержащий сильный окислитель — гипероксид-ион, а для восстановления применять сильный восстановитель — боргидрид натрия ЫаВН4. Можно ожидать, что краун-эфиры с различным числом атомов углерода в цикле получат широкое практическое применение для избирательного захвата катионов и других целей. [c.279]

    Соединения с кислородом. Соединения щелочных металлов с кислородом оксиды Э2О (ряд —Сз), пероксиды Э2О2 (ряд Ь —Сз) и надпероксиды ЭО2 (ряд К—Сз) — кристалличеекие вещества с ионной решеткой, различной окраски (бесцветные — ЫгО, МагО, желтые — [c.181]


Смотреть страницы где упоминается термин Щелочные металлы надпероксиды: [c.116]    [c.308]    [c.181]    [c.198]    [c.1031]    [c.289]    [c.198]    [c.181]    [c.181]    [c.185]   
Общая и неорганическая химия (1981) -- [ c.302 , c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Надпероксиды



© 2025 chem21.info Реклама на сайте