Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий с кислородом

    Все, щелочные металлы весьма энергично реагируют с кислородом. При избытке кислорода литий образует оксид Li20 (с небольшой гримесью пероксида Li202), натрий — пероксид МпгОг, а К, Rb, s — надпероксиды ЭО2. Реакция [c.302]

    Для натрия образование перекисных соединений более характерно, чем ДJ я лития. Так, взаимодействуя с кислородом, он (в отличие от лития I образует не оксид, а пероксид  [c.489]

    Воспламеняющиеся реактивы — пероксиды натрия, калия, лития, магния, стронция, бария, цинка, а также пероксид водорода, азотная кислота и ее соли, соли кислот азотистой, хлористой, хлорноватой, йодной, йодноватой, хлорная кислота и ее соли, соли надборной, надсерной и марганцевой кислот, хромовый ангидрид и соли хромовых кислот. Все эти соединения негорючи, но, разлагаясь, они выделяют кислород, способствующий горению других веществ, а следовательно, интенсивному развитию пожара. Не менее важной особенностью этих веществ является их способность не только воспламеняться, но и взрываться в смеси с другими веществами. [c.38]


    При переходе от лития к фтору Г происходит закономерное ослабление металлических свойств и усиление неметаллических с одновременным увеличением валентности. Переход от фтора Г к следующему по значению атомной массы элементу натрию Ыа сопровождается скачкообразным изменением свойств и валентности, причем натрий во многом повторяет свойства лития, будучи типичным одновалентным металлом, хотя и более активным. Следующий за натрием магний во многом сходен с бериллием Ве (оба двухвалентны, проявляют металлические свойства, но химическая активность обоих выражена слабее, чем у пары Ы — Ыа). Алюминий А1, следующий за магнием, напоминает бор В (валентность равна 3). Как близкие родственники похожи друг на друга кремний 81 и углерод С, фосфор Р и азот Ы, сера 8 и кислород О, хлор С1 и фтор Г. При переходе к следующему за хлором в последовательности увеличения атомной массы элементу калию К опять происходит скачок в изменении валентности и химических свойств. Калий, подобно литию и натрию, открывает ряд элементов (третий по счету), представители которого показывают глубокую аналогию с элементами первых двух рядов. [c.20]

    При высокой температуре титан соединяется с галогенами, кислородом, серой, азотом и другими элементами. На этом основано применение сплавов титана с железом (ферротитана) в качестве добавки к стали. Титан соединяется с находящимися в расплавленной стали азотом и кислородом и этим предотвращает выделение последних при затвердевании стали, — литье получается однородным и не содержит пустот. [c.650]

    Данные таблицы I свидетельствуют, что в полученных формо-литах кислород имеет ацетальную и метилольную формы. [c.343]

    Последовательные реакции в зависимости от условий можно использовать для определения лития, кислорода и азота. Облучение в течение 25 сек уже приводит к активности насыщения для изотопа а измерения в течение такого же времени позволяют зарегистрировать 98% всех нейтронов. Естественно, что задержка после облучения должна быть минимальной и точно фиксированной. [c.296]

    Хотя, согласно литературным данным [3], связь литий — кислород должна иметь частично донорно-акценторный характер, для некоторых комплексов Ь1+...(0Н2) ...Х координационную связь лития с кислородом кристаллизационной воды с хорошим приближением можно рассматривать как ионно-дипольную (потенциал ионизации молекул воды более чем в [c.279]

    Образование твердых растворов и соединений между твердым и жидким металлом происходит в результате протекания диффузионных процессов в твердой фазе — атомной и реактивной диффузии — и является весьма нежелательным явлением, так как образующийся слой твердого раствора или интерметаллического соединения обычно бывает хрупким, что снижает пластичность всего изделия. Возможны также частные случаи химического взаимодействия жидкометаллической среды с компонентами твердого металла взаимодействие щелочных металлов с растворенным в твердых металлах кислородом, лития — с углеродом, серой и [c.144]


    При других партнерах по реакции и условиях ее протекания ряд изменения химической активности простых веществ может быть иным. Так, из щелочных металлов по отношению к фтору (а также кислороду) наиболее активен литий  [c.237]

Рис. 83. Зависимость 1 = (1/7 ) для окисления магния / — прокатанного магния в кислороде 2 — литого магния в сухом воздухе (начальная стадия) и прокатанного магния в сухом воздухе 3 — литого магния в сухом воздухе (конечная стадия) Рис. 83. Зависимость 1 = (1/7 ) для <a href="/info/417090">окисления магния</a> / — прокатанного магния в кислороде 2 — <a href="/info/154255">литого магния</a> в <a href="/info/122530">сухом воздухе</a> (<a href="/info/567919">начальная стадия</a>) и прокатанного магния в <a href="/info/122530">сухом воздухе</a> 3 — <a href="/info/154255">литого магния</a> в <a href="/info/122530">сухом воздухе</a> (конечная стадия)
    Перхлорат лития и нитрат лития отличаются исключительно выгодными характеристиками по сравнению другими неорганическими окислителями, прежде всего из-за высокого содержания кислорода — в перхлорате лития кислорода 60,1%, в нитрате лития — 69,5%, в то время, как в перхлорате аммония, который применяется в большинстве высококачественных типов твердого ракетного горючего, содержание кислорода составляет только 54,4%. Кроме того, перхлорат и нитрат лития обладают более высокой плотностью, вполне удовлетворительны в отношении показателей токсичности и коррозионного действия, они также весьма стабильны, если защищены от воздействия воды. Пер хлорат и нитрат лития легко растворяются в спирте (в метаноле, например, растворяется 65% перхлората лития), что позволяет использовать их в производстве горючего с высоким содержанием энергии, большой плотностфю и высоким содержанием кислорода для жидкостных ракетных двигателей. По совокупности свойств эти соединения являются весьма перспективными окислителями для производства сложных типов ракетного горючего, а так- [c.20]

    Свойства. Щелочные металлы Ыа, К, КЬ, Сз — легкоплавкие металлы. Ы, Ыа, К, КЬ имеют серебристо-белую окраску, а Сз — золотисто-желтую, не такую яркую как у золота, но вполне заметную. Находящиеся под керосином щелочные металлы бывают покрыты слоем нз оксидов и пероксидов (литпй — смес1 .ю нитрида и оксида) . На воздухе они легко окисляются (КЬ и Сз — самовозгораются), реакция ускоряется под действием влаги в совершенно сухом кислороде при комнатной температуре натрий не окисляется н сохраняет блестящую поверхность. Литий приблизительно такой же мягкий, как свинец, натрий — как воск. К, КЬ и Сз — еще мягче. Щелочные металлы обладают высокой сжимаемостью, электро- и теплопроводностью. Литий — самое легкое из твердых веществ, существующих прп комнатной температуре. Некоторые свойства щелочных металлов указаны в табл. 3.1 Работа со щелочными металлами требует боль иой осторожно сти,. гак как они легко загораются, бурно реагируют с водой многими другими веществами. При длительном хранении в керо сине калий покрывается слоем надпероксида, который при разре зании металла может с ним интенсивно реагировать, вызывая загорание и разбрызгивание горящей массы. [c.299]

    Константа скорости образования комплекса К увеличивается по мере добавления металлов и зависит от природы металла. Максимальное влияние на величину К оказывают концентрации металлов — примерно до 0,3—0,4 вес. % При больших концентрациях металлов константа скорости образования углерод-кислород-ного комплекса изменяется незначительно (см. рис. 73). Наиболее резко эта константа изменяется у образцов с добавками хрома при содержании его в катализаторе от 0,1 до 0,8% К становится в 3 раза больше, чем для исходного. Среди щелочных и щелочноземельных металлов сильнее всего на константу образования комплекса влияет литий. В присутствии 1,3 вес. % этого металла она возрастает в 2,5 раза. Константа скорости К2 разложения комплекса не зависит от содержания металла в катализаторе и определяется только его природой (см. рис. 74). Большая часть исследованных металлов уменьшает константу скорости К2 разложения комплекса. Так, наименьшая величина константы скорости разложения комплекса наблюдается на образцах, содержащих хром. В этом случае К2 в 2,4 раза меньше константы скорости разложения исходного катализатора (см. рис. 74). Среди щелочных металлов эта константа наиболее резко уменьшается при добавлении лития (в 1,2 раза). Щелочноземельные металлы практически не влияют на коНстанту разложения кислородного комплекса. [c.169]

    Среди щелочных металлов эта константа наиболее резко уменьшается при добавлении лития (в 1,2 раза). Щелочноземельные металлы практически не влияют на константу разложения кислород-углеродного комплекса. [c.35]


    Кислород Кобальт Кремний Криптон Ксенон. Кюрий. Лантан. Литий. Лютеций Магний. Марганец Медь. . . Менделевий Молибден Мышьяк Натрий. Неодим Неон. . Нептуний Никель. Ниобий Нобелий Олово. Осмий. Палладий Платина Плутоний Полоний. Празеодим Прометий Протактиний Радий Радон Рений [c.19]

    Вместе с тем необходимо подчеркнуть, что энергетически выгодное распаривание электронов происходит лишь в пределах одного энергетического уровня. Поэтому получение, например, четырехвалентного кислорода, трехвалентного лития, двухвалентного гелия практически невозможно, так как затрата энергии при переходах [c.43]

    Помимо литья металлов, требующего полного расплавления и композиционного формирования расплава, имеется большое число операций термической обработки, в результате которых осуществляется молекулярная переориентация и перестройка кристаллической структуры металлов и сплавов. Для достижения такой перестройки необходимо обеспечить, как правило, нагрев металлической детали до температуры, при которой подвижность электронов и атомов в металле станет достаточной для перехода в новое состояние при заданной скорости. Однако при этом нельзя превышать температуры плавления. При выборе температуры необходимо учитывать вид термообработки. Соответствующие ему реакции взаимодействия между компонентами газовой фазы и металлом должны проходить при отсутствии окисления поверхности металла. Иными словами, нагрев металлического изделия должен осуществляться в атмосфере, свободной от кислорода. Если необходимая кристаллическая структура неустойчива при комнатной температуре, ее необходимо зафиксировать при повышенной температуре, т.е. охладить или закалить металлическую деталь с такой скоростью, при которой в дальнейшем не произойдет перестройки молекул. [c.316]

    Бруэр и Маргрейв [928] отметили, что система литий — кислород вблизи состава, соответствующего LI2O, имеет небольшую область гомогенности, что может внести погрешность в расчеты тепловых эффектов равновесий, включающих конденсированную фазу LijO. В работе Берковича и др. [758] приведены значения давлений паров LI2O, LiO и О при 1400° К. Эти данные позволяют рассчитать тепловой эффект реакции [c.882]

    Система железо — литий — кислород. О характере фазовых равновесий в системе Ы—Ре—О можно судить на основе диаграммы, построенной Глейзером [49] (рис. 32). Из этой диаграммы и данных [50—53] следует, что в системе Ре——О возможно об- [c.95]

    Необходимо отметить, что Мак-Гоуен и Форд [282] изучали кинетику полимеризации этилена на каталитической системе бутиллитий— четыреххлористый титан при 30°. Компоненты катализатора вводили в реакцию в отсутствие этилена. Во всех случаях использовали молярное соотношение компонентов 4 1. Поскольку другие соотношения не были исследованы, определить оптимум каталитической активпости невозможно. Однако при соотношении 4 1 полимеризация происходила. При введении в систему вместе с этиленом кислорода скорость полимеризации вначале не изменялась, но затем процесс полностью прекращался. Авторы объяснили это явление связыванием алкила лития кислородом. Однако [c.127]

    Из других элементов второго периода периодической системы бор и бериллий образуют расщепляемые на антиподы соединения, в которых центральный атом является четырехлигандным (т. е. связан с четырьмя атомами или группами от латинского слова ligare — связывать). Четырехлигандные соединения остальных элементов второго периода — лития, кислорода, фтора и неона — неизвестны. [c.64]

    В обычных условиях азот непосредственно взаимодействует лишь с литием с образованием LigN. При активации молекул N2 (нагре-ваниш, действием электроразряда или ионизирующих излучений) азот )бычно выступает как окислитель и лишь при взаимодействии с фтором и кислородом — как восстановитель. [c.345]

    Литий ВЫСОКО химически ак1ивен. С кислородом и азотом взаимо-лейс1вует уже при обычных условиях, поэтому на воздухе тотчас окисляется, образуя темно-серый налет продуктов взаимодействия (Ь[гО, LijN) При температуре выше 200°С загорается. В атмосфере фтора и хлора, а также в парах брома и иода самовоспламеняется при обычных условиях. При нагревании непосредственно соединяется с серой, углем, водородом и другими неметаллами. Будучи накален, горит в Og. [c.486]

    Литий — одновалентный металл, энергично разлагающий воду с образованием щелочи. За литием идет бериллий — тоже металл, но двухвалентный, медленно разлагающий воду при обычной температуре. После бериллия стоит бор — трехвалентный элемент со слабо выраженными неметаллическими свойствами, проявляющий однако 1и которые свойства металла. Следующее место в ряду занимает углерод — четырсхвалентный неметалл. Далее идут азот — элемент с довольно ])езко выраженными свойствами неметалла кислород — типичный неметалл наконец, седьмой элемент с1)тор — самый активный из неметаллов, принадлежащий к группе галогенов. [c.48]

    Все щелочные металлы энергично соеднняююя с кислородом. Рубидий и цезпй самовоспламеняются иа воздухе литий, натрий и калий загораются при небольшом нагревании. Характерно, что только литий, сгорая, образует нормальный оксид Ь(20, остальные же щелочные металлы превращаются в пероксидйые соединения ЫазОг. КОа, РЬОз, СзОа. [c.563]

    Щелочные металлы и их соединения широко используются технике. Литий применяется в ядерной энергетике. В частности, изотоп Li служит промышленным источником для производства трития, а изотоп Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, ои применяется в металлургии для удаления следов этнх элементов из металлов и сплавов. LiF и Li l входят в состав флюсов, используемых при ]]лавке металлов и сварке магння и алюминия. Используется лтий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои с1юйства при температурах от —60 до - -150°С. Гидроксид лития входит в состав электролита щелочных аккумуляторов (см. 244), благодаря чему в 2—3 раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов. [c.564]

    Кислород и щелочи могут выде.лить этил- й бензоил-меркаптаны. Один, сам но себе, докторский раствор действия не оказывает. [c.204]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    Элементорганические анионы, не имеющие связанных с металлами атомов кислорода, серы или азота, называют подобно радикалам, но окончание ио заменяют на ат , например ЫСи(СНз)2 диметилкупрат лития [(СвН5)зРЬ] трифенил- [c.194]

    Реакционная способность углерода сильно зависит от его структуры и чистотьр), т. е. наличия в составе его примесей. Например, исследования реакционной способности углерода показали значительное действие карбонатов натрия, калия, лития и солей железа на температуру его воспламенения [61, 63]. В этой связи при изучении кинетики процесса взаимодействия углерода с кислородом применяют графит или древесный уголь, либо другие искусственно приготовленные беззольные угли [62, 64]. Некоторые исследователи используют хорошо подготовленный беззольный и не содержащий летучих соединений уголь с вы- [c.21]

    Детали из алюминия и его сплавов сваривают в газовом пламени без избытка кислорода или же ручной электродуговой сваркой постоянным током обратной полярности. Химический состав электродов должен соответствовать составу основного металла. При сварке применяют флюс АФ-44 (28% хлорида натрия, 50% хлорида калия, 14% хлорида лития и 8% фторида натрия). ГОСТ 78711—75 предусматривает сварочную проволоку из алюминия н алюминиевых сплавов. ГОСТ 14806—80 указывает основные типы и конструктивные элементы соединений при электродуговой сварке алюминия и алюм иниевых сплавов. [c.266]

    При крупномасштабном производстве алюминиевого литья алюминий весьма часто переплавляют в мелких отражательных печах, куда предварительно загружают слитки металла. В этих печах пламя должно быть неинтенсивным и коптящим. Оно не должно бить в металл, так как последний может абсорбировать из пламени водород. Его, как правило, удаляют в конце плавления путем вдувания газообразного хлора. Избыточный кислород также нежелателен, хотя он и способствует образованию на поверхности расплавленного металла защитной окисной пленки. Толщина этой пленки может превысить минимально допустимую величину и привести к излишним потерям металла от переокис-ления. [c.314]


Библиография для Литий с кислородом: [c.584]   
Смотреть страницы где упоминается термин Литий с кислородом: [c.144]    [c.859]    [c.11]    [c.13]    [c.147]    [c.279]    [c.48]    [c.71]    [c.178]    [c.29]    [c.46]    [c.43]    [c.125]    [c.818]    [c.43]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.24 ]

Основы общей химии Том 3 (1970) -- [ c.7 ]




ПОИСК







© 2025 chem21.info Реклама на сайте