Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лавеса электронная

    Цинтля, доминирующей является металлическая связь. При этом возникают металлиды с плотноупакованными кристаллическими структурами. Формальные стехиометрические соотношения при этом не соблюдаются в силу коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к образованию соединений Курнакова, фаз Лавеса, электронных соединений Юм-Розери и т.п. [c.262]


    Металлохимические свойства и диаграммы состояния. По мере усложнения химической организации вещества в ряду соединения Курнакова — фазы Лавеса — фазы внедрения электронные соединения Юм- Диаграмма состояния Розери — происходит нарастание ка- системы медь —цинк Таблица 23. Характеристика некоторых электронных соединений Юм-Розери [c.387]

    Образование соедивений в металлических системах. В противоположность примитивным типам взаимодействий металлохимические реакции, приводящие к образованию соединений, можно условно отнести к сложным типам. Основное от.личие этих процессов заключается в возникновении при взаимодействии качественно нового химического индивида, характеризующегося своеобразными структурой и свойствами по сравнению с исходными компонентами. По мере нарастания взаимного химического сродства металлов образующиеся соединения приобретают все более ярко выраженную индивидуальность. В зависимости от того, какой из металлохимических факторов преобладает при взаимодействии, возникают фазы различного типа соединения Курнакова, фазы. Лавеса, фазы внедрения, электронные соединения Юм-Розери и, наконец, соединения, отвеча- [c.214]

    Металлохимия. Роль и значение элементов подгруппы меди в металлохимии трудно переоценить. Достаточно сказать, что впервые соединения Курнакова были открыты в системе Си—Аи, фазы Лавеса — в системе Си—Mg, а электронные соединения Юм-Розери изучены в системе Си—2п. Ниже приведена характеристика взаимодействия этих металлов друг с другом  [c.314]

    КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА — структура, в к-рой атомы вещества распределены периодически в трех измерениях, образуя кристаллическую решетку. В зависимости от типа хим. связи в неорганических материалах различают К. с. ионную, атомную и металлическую. Кроме того, возможны промежуточные структуры (внедрения фазы, Лавеса фазы, сигма-фазы и электронные соединения), в к-рых может быть не- [c.661]

    В отдельных случаях эти факторы влияют на структуру в разной степени. В так называемых фазах Лавеса фактором, определяющим тип структуры, является отношение радиусов атомов, а в фазах Юм-Розери — отношение числа валентных электронов к числу атомов. В случае большой разности электроотрицательностей металлических компонентов образуются интерметаллические структуры с ионно-металлической связью. [c.462]


    Средняя концентрация валентных электронов на атом в различных устойчивых фазах Лавеса некоторых тройных сплавов марганца [14] [c.16]

    Эффекты, связанные с электронной концентрацией, несомненно, важны с двух точек зрения они ответственны и за наблюдаемые устойчивые структуры, например за возникновение кубической фазы Лавеса в ряду КАЬ, и за отсутствие многих составов в соединениях с двухвалентными европием и иттербием. [c.32]

    Из всех известных соединений наиболее широко изученными являются составы RB2, подавляющее большинство которых образуют фазы Лавеса с кубической структурой (С15). Как мы указывали в 2, появление фаз Лавеса зависит от степени заполнения пространства, и осуществление той или иной из устойчивых фаз Лавеса (СИ, С15 или С36), которые в конце концов образуются, определяется эффектами, связанными со средней концентрацией валентных электронов. [c.71]

    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]

    Закоиомер]юстн образования этих соединений обычно обусловлены металлохимическими параметрами низшего порядка — размерным фактором и электронной концентрацией. Типичными представителями интерметаллических соединений являются электронные соединения Юм-Розери, фазы Лавеса, соединения Курнакова Последние со структурной точки зрения близко примыкают к твердым растворам, в чем проявляется единство непрерывности и дискретности при химическом взаимодействии. [c.78]

    Образование фаз внедрения в отличие от твердых растворов внедрения сопровождается экзотермическим эффектом, иногда довольно значительным (например, для 2гНг АЯ= —169,3 кДж/моль, для Т1С АЯ= —183,5 кДж/моль). Это обусловлено уменьшением свободной энергии системы в процессе перестройки структуры. Возможность образования фаз внедрения регламентируется правилом Хэгга гэ гме 0,59, где гэ — радиус внедренного атома гме — радиус металла. Однако здесь размерный фактор играет не столь доминирующую роль, как при образовании соединений Курнакова и фаз Лавеса. Факторы более высокого порядка — электронная концентрация и разность электроотрицательностей — накладывают свой отпечаток на характер взаимодействия компонентов при образовании фаз внедрения. Разность электроотрицательностей здесь все же не играет существенной роли, так как металлид-ный характер фаз внедрения свидетельствует о практическом отсутствии ионной составляющей связи. Влияние электронной концентрации сказывается существенно, так как электроны внедренного неметалла обобществляются, попадая на вакантные с1- или /-орбитали металла, что приводит к образованию новой структуры с металлическими свойствами, в которой атомы неметалла также ме-таллизованы. [c.383]

    Устойчивость интерметаллических фаз зависит от электронной структуры металлов и связана с электронной концентрацией е а — отношением числа валентных электронов к числу атомов в соединении или элементарной ячейке. По мере увеличения е а и достижения определенного значения образуется новая фаза с другой структурой и устойчивая в данном интервале электронных концентраций. Юм Розери установил, что такие фазы возникают при е/а 1,5, 1,62 и 1,75, что подтверждено на большом числе двойных систем. Для фаз Лавеса идеальное отношение размеров атомов равно 1,225, а структура зависит от е а. При е а = 1,3 -ь 1,7 образуются фазы с кубической решеткой — TiBe2, TiFea и др. при е а = 1,8 ч- 2,0 образуется фаза с гексагональной решеткой — TiMria- [c.239]

    Для непереходных металлов было показано [37], что областям стабильности фаз Лавеса с кристаллической структурой типа М Си2 отвечают значения электронной концентрации менее 1,8 и более 2,32 эл/атом, при 1,93—2,32 эл/атом стабильна структура типа М 2п2, а при промежуточных значениях электронной концентрации 1,83—1,93 эл атом наблюдается образование фаз со структурой типа MgNi2. Некоторая корреляция между типом кристаллической структуры и электронной концентрацией отмечалась и для фаз Лавеса переходных металлов, однако количественная оценка влияния такого фактора в этом случае очень затруднена [15, 4]. [c.169]


    Чередование фаз Лавеса с различным типом кристаллической структуры в системах 2г — Ме (Ме — переходной металл V— VIII групп периодической системы элементов) также можно рассматривать как влияние изменения электронной концентрации в зависимости от эффективной валентности компонента В (Ме ) при неизменном компоненте А (2г). Чередование Х,2->Я1 Я2 в пределах периода в таком случае должно являться результатом увеличения эффективной валентности переходных металлов с ростом порядкового номера в соответствии с ростом суммы 8 + d электронов, а диагональное смещение кристаллохимических свойств фаз Лавеса следует отнести за счет уменьшения эффективной валентности с увеличением главного квантового числа в группах. [c.169]

    Если полиморфизмом обладает лишь один из двух бинарных металлидов, то н. р. т. р. образуется между вторым металлидом и изоморфной ему модификацией первого. На основе других модификаций образуются ограниченные твердые растворы. К. такому типу систем относятся исследованные нами тройные системы 2г — Сг — (V, Мо, Ш, Мп). В первых трех системах н. р. т. р. образуются с низкотемпературной модификацией 2гСгд ( а), а в системе 2г — Сг — Мп соединение 2гМп2 образует н. р. т. р. с высокотемпературной его модификацией (Хх). Протяженность области в каждой из систем 2г — Сг — (V, Ш, Мо) составляет не более 2 ат. % V, 14 ат. % Ш и 50 ат.% Мо соответственно. Эти значения вполне согласуются с эффективной валентностью соответствующих компонентов, которая возрастает в ряду V Ш Мо -> Сг. Замещение атомов хрома атомами молибдена, эффективная валентность которого незначительно меньше, чем у хрома, возможно в широких пределах без уменьшения суммарной электронной концентрации ниже предельного значения, при котором становится нестабильной. При замещении атомов хрома атомами вольфрама, эффективная валентность которого еще несколько меньше, предельное значение электронной концентрации для 1-фазы достигается при меньшей концентрации замещающего элемента. Эффективная валентность ванадия, принадлежащего к V группе периодической системы, существенно меньше эффективной валентности хрома, и уже при незначительном содержании его достигается предельное значение электронной концентрации, допускающее существование 1. Ограниченные растворы на основе кз в тройных системах не всегда удается выявить металлографически фазы Лавеса здесь неразличимы, а рентгеновские методы также не всегда позволяют отличить ее от 1, вследствие размытости линий на рентгенограммах порошков закаленных сплавов. Так, в системе 2г — Сг — Мп Яд обнаружена в ограниченном температурном интервале в области до 10 ат.% Мп, а в системах 2г — Сг — (V, Мо, Ш) пока ее не удается отличить от [c.171]

    Среди двойных И. наиб, распространены соед. Курнахова, фазы Лавеса, фазы Юм-Розери (электронные соед.), ст-фазы, ст-подобш>1е фазы. Известны и нек-рые др. И. Особенно многочисленными являются соед. Курнакова (сверхструктуры, упорядоченные твердые р-ры), характеризующиеся упорядоченным расположением атомов компонентов (атомы каждого из металлов занимают в кристаллич. решетке И. Строго определенное положение, создавая как бы неск. вставленных одна в другую подрешеток). Сверхструк-ту-ры по сравнению с неупорядоченными твердыми р-рами того же состава часто имеют большие (в 2-3 раза) размеры элементарных ячеек, а также добавочные дифракц. линии на рентгенограммах. Соед. Курнакова имеют составы АВ, AjB, AjB и т.д., однако в силу металлич. характера связи эти фазы могут обладать широкими областями гомогенности. В нек-рых сплавах упорядоченное расположение атомов компонентов возникает уже при кристаллизации, но в большинстве случаев упорядочение происходит в твердом состоянии ниже определенной т-ры, наз. точкой Курнакова. [c.244]

    Фазы Лавеса-соед. состава ABj (реже АВ)-образуются обычно при определенном соотношении атомных радиусов компонентов г /гд и обладают узкими областями гомогенности. При взаимод. металлов подгруппы 16, а также нек-рых переходных с металлами подгрупп Ша, IVa, II6-V6 при условии достаточно малого различия в величинах атомных радиусов компонентов образуются фазы Юм-Розери, часто наз. также электронными соединениями. (Т-Фазы образуют переходные металлы гл. обр. подгрупп V6, VI6 с металлами подгрупп VII6, VIII6 также при условии достаточно малого различия в величинах их атомных радиусов (эти И. иногда наз. электронными соед. переходных металлов). ст-Подобные фазы, напр. Ц-, X-, / -фазы. сходны по кристаллич. структуре с ст-фазами, но все же имеют небольшие отличия. [c.244]

    В случае др. И. электронный фактор может не оказьгаать ограничивающего действия на концентрац. область существования И., т.к. ограничивающим становится др. фактор-геометрический (или размерный) Гд/Гв,-требующий определенного соотношения числа атомов компонентов в связи с особой ролью атомного упорядочения, напр. соед. N 4 10, или в связи с тем, что позиции, занимаемые атомами в кристаллич. решетке, не равноценны, напр, фазы Лавеса АВ2. Эти фазы (структурные типы Mg u2-кубич., [c.246]

    MgNi2-гексагон. и igZп2-гексагон.) возникают при взаимод. металлов практически всех групп периодич. системы при условии, что соотношение атомных радиусов компонентов Гд/Гв 1,22 (практически для табличных значений радиусов Гд/гв 1,10-1,40). Ограничивающее действие фактора электронной концентрации проявляется в том, что нек-рые элементы вообще не образуют фаз Лавеса, напр, переходные элементы в системах состава АВ2 при 7,7. [c.246]

    Характер взаимод. И. с Hj зависит от реакц. способности компонентов по отношению к водороду. Если все компоненты И являются активными гидридообразователями, происходит диссоциация И. с образованием индивидуальных гидридов, насыщение водородом может привести к аморфизации И. В др случаях возникают сложные гидриды как фазы на основе И (см. Гидриды). Это определяется ие только особенностями кристаллич. структуры (иапр., наличием мест внедрения), но и особенностями электронной структуры компонентов и самого И. (наличием электронных вакансий). Такими особенностями обладают фазы Лавеса, а также родственные им фазы с участием переходных металлов, прежде всего РЗЭ. [c.247]

    В фазах Лавеса АВг для трех близких структурных типов (М 2пг, М Си2 и М Ы12) атом А имеет координацию 12В + 4А, что согласуется с представлением об определяющей роли в этих структурах размерного фактора. Эти фазы образуются с участием большого числа элементов периодической системы, причем один и тот же элемент в различных соединениях может оттюситься к типу А или к типу В. В некоторых тройных системах в различных областях составов могут существовать две или более фазы, причем переход от одного структурного типа к другому происходит при определенном числе электронов, приходящихся на один атом. Это свидетельствует о том, что выбор той или иной структуры из нескольких близких может быть обусловлен более чем одним фактором. [c.481]

    Мегаллохимические свойства и диаграммы состояния. По мере усложнения химической организации вещества в ряду соединения Курнакова — фазы Лавеса — фазы внедрения — электронные соединения Юм-Розери происходит нарастание качественного отличия промежуточных фаз от компонентов, их образующих. При этом происходит ослабление влияния объемно-геометрических и усиливается роль физико-химических и химических факторов. Так, фактор электронной концентрахщи, проявляющийся уже при образовании фаз внедрения и наиболее ярко выступающий при возникновении электронных соединений, является преимущественно химическим, поскольку его действие связано с перераспределе- [c.221]

    Значительно чаще приходится иметь дело с интерметаллическими соединениями типа так называемых промежуточных фаз [3]. Среди них различают электронные соединения, состав и свойства которых связаны с определенным отношением числа валентных электронов к числу атомов (фазы Юм-Розери) фазы Лавеса, возникающие в сплавах состава АВа, в которых отношение атомного радиуса металла А к радиусу атома металла В равно 1,2 надструк-туры и т. п. [c.217]

    В структуре MgNig в направлении оси с закономерно чередуются оба типа тетраэдров. Нетрудно заметить, что в фазах Лавеса размеры атомов А и В относятся как 1,2 1, хотя возможны и небольшие вариации в интервале 1,1 —1,4 [9, 10]. Как видно из табл. 25.2, в фазах Лавеса встречаются элементы почти всех групп периодической системы, причем некоторые элементы, такие, как Mg, V и Bi, могут занимать как позиции А, так и позиции В. Поэтому атомную структуру этих фаз трудно связать с их электронным строением. [c.271]


Смотреть страницы где упоминается термин Лавеса электронная: [c.124]    [c.388]    [c.221]    [c.168]    [c.325]    [c.475]    [c.481]    [c.296]    [c.475]    [c.325]    [c.794]    [c.128]    [c.131]    [c.135]    [c.286]    [c.15]    [c.83]    [c.102]    [c.163]   
Очерки кристаллохимии (1974) -- [ c.466 ]




ПОИСК







© 2025 chem21.info Реклама на сайте