Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число электронов, определение

    На каждом энергетическом уровне может находиться строго определенное число электронов, максимально 2п . [c.29]

    Методы прямых потенциометрических измерений служат также для определения таких важнейших характеристик, как коэффициенты активности, стехиометрические коэффициенты химических реакций, число электронов, участвующих в химических и электрохимических реакциях и др. [c.27]


    Полярографическую волну, подчиняющуюся уравнению (5.15), называют обратимой она имеет характерную крутизну (скорость подъема). В полулогарифмических координатах наклон прямой Е — 1я[(г д. пр — /)//] равен ЯТ/пР, что позволяет определить число электронов, принимающих участие в реакции. Наличие обратимости электродного процесса, определяющее возможность получения обратимой полярографической волны, важное обстоятельство для аналитика, поскольку во многих случаях, особенно в различных модификациях полярографического метода, только для обратимого процесса можно получить сигнал тока, имеющий аналитическое значение. Таким образом, важной составляющей подготовки к проведению полярографического определения нового соединения, или известного вещества в новых условиях (другой растворитель, другой фоновый электролит, присутствие поверхностно-активных веществ), является установление наличия обратимости процесса. [c.276]

    Такая оценка возможна лишь для обратимых электрохимических реакций. В случае необратимых реакций число электронов, определенных таким методом, меньше, чем число действительно участвуюш,их в реакции, так как крутизна полярографической кривой зависит и от коэффициента перехода а (разд. 4.1.3.3). [c.132]

    В кратком курсе нет необходимости более детально рассматривать эти соотношения. Однако следует характеризовать специфические особенности механизма электронной проводимости в полупроводниках, существенно отличного от механизма проводимости металлов. Металлы н полупроводники не только количественно сильно различаются по проводимости. Хот-я в обоих случаях ток переносится движением электронов, но в металлах это электроны электронного газа, не связанные с определенными атомами кристаллической решетки, а в полупроводниках — это электроны, вырываемые из атомов или молекул, составляющих кристаллическую решетку. Концентрация электронов, способных передавать ток в металлах, в тысячи и миллионы раз больше, чем в полупроводниках. В металлах понижение температуры, ослабляя колебания атомов, составляющих решетку, повышает проводимость и при достаточном понижении температуры (вблизи абсолютного нуля) у некоторых металлов она сильно возрастает. В полупроводниках же понижение температуры обычно уменьшает число Электронов проводимости, а следовательно, и электронную проводимость, и при достаточно низкой температуре последняя становится очень малой. [c.146]


    Основной предельной моделью теории является идеальный кристалл, имеющий при определенной температуре 7 лишь соответствующее этой температуре термодинамически разновесное число дефектов. При любой, отличной от абсолютного нуля, температуре в зоне проводимости подобного кристалла находится какое-то число электронов, которые обусловливают появление свободных валентностей на поверхности кристалла. Число свободных валентностей растет с температурой, причем для принятой модели высота активационного барьера опреде- ляется шириной запрещенной зоны для данного кристалла. [c.366]

    Чтобы понять, как атомы углерода удерживаются вместе, мы должны рассмотреть строение электронной оболочки этих атомов. В каждом атоме нейтроны и протоны сконцентрированы в центральной части, называемой ядром. В пространстве, окружающем ядро, располагаются электроны, которые занимают различные энергетические уровни. На каждом энергетическом уровне может находиться определенное число электронов. [c.185]

    В гл. 1 уже упоминалось, что атомное ядро состоит из двух типов основных элементарных частиц, протонов и нейтронов, которые в совокупности называются нуклонами. Ядро имеет положительный заряд, равный числу содержащихся в нем протонов, а это число 2 называется порядковым (атомным) номером ядра. В нейтральном атоме ядро окружено электронами, число которых равно числу протонов в ядре. Поскольку химические свойства атома определяются его электронами, все нейтральные атомы с одинаковым числом электронов (и протонов) рассматриваются как атомы одного элемента. Следовательно, порядковый номер атома указывает на его принадлежность к определенному элементу. Суммарное число протонов и нейтронов в атомном ядре называется его массовым числом, А. [c.405]

    Из современных представлений о механизме электролиза этот закон вытекает вполне естественно. В самом деле, если каждый ион данного вида отдает или принимает в данном процессе определенное число электронов, то общее их число, а следовательно, и общее количество прошедшего электричества пропорционально числу прореагировавших ионов, т. е. количеству прореагировавшего вещества. [c.445]

    Атом — устойчивая динамическая система из положительно заряженного ядра и определенного числа электронов. У атома как устойчивой системы энергия ниже, чем суммарная энергия невзаимодействующих ядра и электронов, принимаемая обычно за начало отсчета. Энергия атома при таком отсчете оказывается отрицательной. [c.24]

    В атоме не может быть двух электронов, у которых были бы одинаковыми все четыре квантовых числа принцип Паули). Это означает, что на одной орбитали, характеризующейся определенными значениями главного, орбитального и магнитного квантовых чисел, могут находиться лишь два электрона с т = + 1/2 и —1/2 (с антипараллельными спинами). Электроны с противоположно направленными спинами, но одинаковыми значениями остальных квантовых чисел называются спаренными или неподеленной электронной парой. Принцип Паули позволяет рассчитать максимальное число электронов на каждом энергетическом уровне и подуровне в атоме. Максимальное число электронов на подуровне находят по формуле 2(2/+1). В соответствии с этой формулой на одной х-орбитали может находиться не более двух электронов (1=0), на трех р-орбиталях — не более шести [c.11]

    Рассмотрев потенциальную кривую (поверхность), можно дать еще одно определение молекулы молекула — физически устойчивая система из двух ядер или более и определенного числа электронов, состояние которой описывается потенциальной кривой (поверхностью) с минимумом. Говоря о физической устойчивости, понимают, что соединение атомов в молекулу сопровождается понижением энергии системы. Данным здесь определением охватываются кроме обычных молекул (На, СН4 и др.) также радикалы (СН, ОН, СН3 и др.) и молекулярные ионы (Нг, О2 и др.). Этому отвечает одинаковый подход теории строения к изучению перечисленных типов частиц. [c.46]

    На этом пути, идя снизу вверх, я выхожу и на систематизацию видов атомов (химических элементов), следуя генеалогической родословной материи. Такое переворачивание вектора познания влечет за собой и переворачивание дефиниций некоторых естественнонаучных понятий. Раньше атом определялся как "частица вещества микроскопических размеров (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойства". В новом подходе "атом — это частица вещества, качественная определенность которой характеризуется определенным числом протонов и нейтронов в ядре и определенным числом электронов (равным числу протонов) в электронной оболочке". [c.83]

    Количество вещества пропорционально числу вполне определенных элементарных единиц этого вещества. Коэффициент пропорциональности одинаков для всех веществ, его обратной величиной является число Авогадро. Такой элементарной единицей может быть атом, ион, радикал, электрон и т. д. или какая-то определенная совокупность таких частиц. [c.665]


    Если пластинки цинка и меди, погруженные в растворы своих солей (см. рис. 22), соединить Проволокой, то в силу разных значений их потенциалов определенное число электронов с цинковой пластинки перейдет на медную. Это нарушит равновесие двойного электрического слоя на обеих пластинках. С цинковой пластинки некоторое число ионов 2п + вновь перейдет в раствор, а на медной пластинке разрядится соответствующее число ионов Си +. Таким образом, в зарядах пластинок снова возникает разность, вызывающая направленный переход электронов с цинковой пластинки на медную, т. е. возникает электрический ток. Цинковая пластинка при этом растворяется, а на медной разряжаются ионы Си2+— выделяется металличе<жая медь. Следовательно, одной из причин возникновения э. д. с. в гальванических элементах является различное значение потенциалов, возникающее у отдельных металлов на границе металл — раствор. [c.121]

    Характеристика поведения электронов в атомах. Атомы различных элементов характеризуются определенным значением заряда ядра и равным ему числом электронов, которые распределяются по энергетическим уровням. Поведение электронов в атоме характеризуется четырьмя квантовыми числами. [c.27]

    Атомные массы элементов в периодической таблице, например, являются средним значением из массовых чисел природных смесей изотопов. Поэтому они не могут, как предлагал Д. И. Менделеев, служить главной характеристикой атома, а следовательно, и элемента. Такой характеристикой, как мы теперь знаем, является заряд ядра. Он определяет число электронов в нейтральном атоме, которые распределяются вполне определенным образом вокруг ядра. Характер же распределения электронов определяет химические свойства атомов. Указанные соображения позволили дать новое определение химического элемента и уточнить формулировку периодического закона  [c.24]

    Первая задача состоит в определении уравнения потенциальной поверхности. Ее решение связано со значительными математическими трудностями, так как требует решения уравнения Шредингера для системы с большим числом электронов, что в настоящее время практически невозможно даже с применением электронных счетных машин. [c.65]

    В самом общем смысле можно считать приемлемым определение химический элемент — это вид атомов, имеющих одинаковое число протонов в ядре . Но для подчеркивания химического аспекта понятия, добавлять "... одинаковое число электронов и одинаковую структуру электронной оболочки всех атомов . И такое уточнение не простая дань форма- [c.141]

    Положением элемента в таблице Д. И. Менделеева определяется его валентность — свойство атомов элемента присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Обычно номер группы указывает на число электронов, которые могут участвовать в образовании химической связи. Такие электроны называются ва- [c.12]

    Таким образом, из полярографических кривых можно определить коэффициенты диффузии разряжающихся частиц, число электронов, участвующих в единичном акте электродного процесса, а также коэффициенты переноса и константы скорости, если их значения меньше 2-10 см/с. Электрохимическим процессам, константы скорости которых больше 2-10 , отвечают обратимые волны. Следовательно, для таких реакций кинетические данные из полярографических волн получены быть не могут и для определения Ко и а прибегают к релаксационным методам. [c.304]

    Задание I. Определение числа электронов, участвующих в электрохимических реакциях Сс1 +Сс1(Н ) и Сг +Сг +, и коэффициентов диффузии ка тионов Сс1 + и Сг + полярографическим методом. [c.305]

    Современные методы исследования позволяют экспериментально определить пространственное положение в веществе атомных ядер. Как указывалось выше, согласно квантовомеханическим представлениям, можно говорить лишь о вероятности нахождения электронов в поле атомных ядер. Данному пространственному положению атомных ядер отвечает определенное распределение электронной плотности. Выяснить, как распределяется электронная плотность, по сути дела и означает описать химическую связь в веществе, но для этого, как известно, необходимо точное решение уравнения Шредингера, что пока осуществлено только для иона Н , состоящего из двух протонов и одного электрона. Для систем с двумя и большим числом электронов приходится применять приближенные решения. [c.55]

    Число протонов в ядре атома принято называть порядковым (атомным) номером и обозначать буквой Z. Оно совпадает с числом электронов, окружающих ядро, поскольку атом должен быть электрически нейтральным. Массовое число атома равно полному числу содержащихся в нем тяжелых частиц протонов и нейтронов. Когда два атома сближаются на достаточное расстояние, чтобы между ними возникло химическое взаимодействие-или, как принято говорить, химическая связь,-каждый атом ощущает главным образом наличие самых внешних электронов другого атома. Поэтому именно эти внещние электроны играют определяющую роль в химическом поведении атомов. Нейтроны в составе ядра оказывают ничтожное влияние на химические свойства атомов, а протоны важны постольку, поскольку они определяют число электронов, которые должны окружать ядро нейтрального атома. Все атомы с одинаковым порядковым номером ведут себя в химическом отношении практически одинаково и рассматриваются как атомы одного и того же химического элемента. Каждому элементу присвоено определенное название и одно- или двухбуквенный символ (обычно заимствованный от греческого или латинского названия). Например, символ углерода-С, а символ кальция-Са. В качестве символа натрия. Ка, взяты две первые буквы его латинского (и немецкого) названия натриум, чтобы отличить его от азота N (латинское название нитроген). В таблице- атомных масс элементов, помешенной на внутренней стороне обложки книги, приведен алфавитный перечень элементов и их символов. [c.15]

    Оправдывает себя следующее правило определения числа связей в молекулах вычитаем из числа электронов на связывающих орбиталях число электронов на разрыхляющих орбиталях и делим разность на два. Рассчитанное таким образом [c.97]

    Парамагнитные вещества обнаруживают интенсивное резонансное поглощение высокочастотной энергии при строго определенных значениях напряженности постоянного магнитного поля (при перпендикулярной ориентации переменного и постоянного магнитных полей). Это явление получило название электронного парамагнитного резонанса (ЭПР). Электронным парамагнетизмом обладают атомы с нечетным числом электронов, свободные радикалы органических веществ, центры окраски в виде электронов или дырок, локализованных в различных местах кристаллической решетки, металлы или полупроводники, имеющие свободные электроны, ионы переходных металлов и некоторые другие ионы. [c.160]

    Для атома, содержащего большое число электронов, определение дозволенных квантовой теорией значений Ь упрощается тем обстоятельством, что заполненные оболочки, такие как s , р, ИТ. д., имеют результирующий орбитальный момент количества движения, равный нулю. В случае одного электрона, находящегося вне заполненных оболочек, Ь, конечно, совпадает с квантовым числом I электрона, а для двух электронов—с азимутальными квантовыми числами и возможные результирующие значения L в предположении, что ботттто пп /и. ттятптря уравнением МХП-ССОР [c.17]

    Электроны в С0СТ0Я1ЖЯХ с одинаковыми значениями п и / составляют электронную оболочку -, различают -оболочки, р-обо-лочки и т. д. Максимальное число электронов в оболочке равно 2(2/+1). Про электроны, у которых одинаковы п, I, гп1, говорят, что они занимают определенную орбиталь. На одной орбитали могут находиться два электрона с противоположными сппнамн. [c.29]

    Валентность химических элементов. Под валентностью, как известно, понимают способность атомов данного элемента соединяться с атомами другого элемента в определенных соотношениях, За единицу валентности была принята соответствующая способность атома водорода. Валентность элемента определяли как способность его атома присоединять (или замещать) то или иное число атомов водорода. В связи с возникновением и развитием теории строения атома и химической связи вален гность стали связывать с соответствующими структурно-теоретическими представлениями, а именно с числом электронов, пере-ходян их от одного атома к другому, или с числом химических связей, Bi.l.зпикaк)Lми.x мсж.ау атомами в процессе образования химического соединения. [c.44]

    Уравнение (XXV. 20) позполлет вычислить коэффициент диффузии разряжающихся частиц в пограничном слое с хорошей воспроизводимостью (1—2%). Если коэффициент диффузии определен каким-либо другим способом, то по этому же уравнению можно найти число электронов, переносимых в электрохимической реакции, что важно для установления ее механизма. [c.304]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]

    Любой атом состоит из положительно заряженного ядра и некоторого определенного для атомов данного элемента числа электронов. Электронам принадлежит определяющая роль в химических превращениях. Ядра атомов при химических превращениях Н прстерпевают практически никаких изменений. [c.7]

    Кроме разложения по базису в квантовой химии часто используется и другой способ построения приближенной волновой функции, который для определенного типа молекулярных структур соответствует интуитивным представлениям о химических связях в молекуле. В этом способе волновая функция молекулы записьшается (приближенно) с помощью двухэлектронных функций, в качестве которых естественно брать антисимметричные 0(лс1, х ) = —Щх , 1). Эти функции принято называть спин-геминапями (или геминтями). Наиболее простое выражение многозлектронной волновой функции получают с помощью гемина-лей в случае синглетного состояния системы, где число электронов четно, N = 1п. Ъ этом случае можно использовать синглетные спин-геминали [c.70]

    Рассмотрение приведенных уравнений показывает, что хотя с ростом — Д растет Лг макс, применение больших амплитуд импульса нежелательно. При малых амплитудах пик имеет более резко выраженную форму, сила тока пика линейно зависит от квадрата числа электронов, принимающих участие в реак ции, что повышает чувствительность при определении многова лентиых ионов. Сила тока пика является линейной функцией концентрации. [c.287]

    Для того чтобы записать уравнение окислительно-восстановительной реакции, прежде всего надо знать исходные вещества и конечные продукты реакции. В отдельных случаях однозначный ответ можно получить из расчета, основанного на данных об окислительно-восстановительных потенциалах соответствующих редокс-пар (разд. 33.5.1.5). Однако часто приходится устанавливать полученные в реакции. вещества с помощью химического анализа. Особое внимание следует обращать на возможность выделения в ходе реакции газов. Например, при реакции пиролюзита МпОг с соляной кислотой цвет и запах выделяющегося газа указывает на образование хлора, а цвет и другие свойства раствора — на образование Мп +. Зная компоненты системы, можно установить состав сопряженных окислительно-восстановительных пар, взаимодействующих в данной реакции. В нащем примере такими парами являются МПО2/МП2+ и С1 /С12- Сначала запишем по 1уреакции для обеих сопряженных пар. Начнем с определения степени окисления, которую атомы элементов имеют в окисленном и восстановленном состоянии. Далее найдем число электронов, которые участвуют в каждой полуреакции  [c.410]


Смотреть страницы где упоминается термин Число электронов, определение: [c.35]    [c.87]    [c.28]    [c.23]    [c.36]    [c.58]    [c.59]    [c.85]    [c.154]    [c.28]    [c.412]    [c.266]   
Полярографический анализ (1959) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Электроны определение



© 2025 chem21.info Реклама на сайте