Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация и образование двойного электрического слоя

    Устойчивость эмульсий типа В/Н, как указывалось ранее, объясняется, главным образом, наличием структурно-механического барьера на границе двух фаз. Образование двойного электрического слоя у эмульсий обратного типа представлялось невозможным вследствие малой диэлектрической проницаемости дисперсионной среды. Однако работами последних лет показано, что даже в неполярных средах может происходить некоторая ионизация и что образующийся двойной электрический слой может играть существенную роль в устойчивости эмульсий обратного типа, особенно разбавленных. [c.32]


    Как отмечает С. 3. Рогинский [29, 223], электронные факторы могут проявляться в определенном характере и механизме адсорбционных стадий, влияющем на кинетические закономерности, а также в возникновении новых стадий процесса, обусловленных электронными переходами, в изменении характера взаимодействия реакционной системы с катализатором и во влиянии заряжения поверхности (т. е. образования двойного электрического слоя) на механизм процессов. Влияние заряжения поверхности должно, в общем случае, выражаться в изменении свободной энергии процессов, связанных с электронными переходами, и в изменении реакционной способности адсорбированных частиц в результате ионизации и поляризации связей. Такой эффект может сказываться на характере кинетической зависимости, величинах констант скорости реакции, энергии активации, констант скорости адсорбции, десорбции и констант адсорбционного равновесия. [c.265]

    В стадии образования двойного электрического слоя скорость этих противоположно направленных процессов не одинакова — быстрее идет Процесс, который способствует образованию двойного слоя. Если в рассматриваемом примере положительные заряды вблизи двойного слоя находятся со стороны раствора, то во время его образования скорость ионизации атома водорода (верхняя стрелка) больше, чем скорость нейтрализации иона (нижняя стрел- [c.177]

    Любая электрохимическая реакция представляет собой сложный многостадийный процесс. В самом деле, реагирующее вещество из объема раствора должно вначале подойти к поверхности электрода (стадия массопереноса)f затем войти в двойной электрический слой (стадия адсорбции), а после непосредственно электрохимической стадии переноса заряда через границу электрод/раствор (стадия разряда— ионизации) продукты реакции должны десорбироваться с поверхности электрода и уйти в объем раствора (стадии десорбции и массопереноса). Во многих случаях электрохимическую реакцию сопровождают стадии химического превращения реагирующих веществ и (или) продуктов реакции, которые могут протекать как в объеме раствора вблизи электрода (гомогенные химические стадии), так и на поверхности электрода в адсорбционном слое (гетерогенные химические стадии). Кроме того, если в электрохимической реакции участвуют твердые или газообразные вещества, то процесс осложняется стадиями образования или разрушения новой фазы (например, процессы электроосаждения и электрорастворения металлов, электролиз воды и др.). [c.212]


    В ионизированных адсорбционных слоях поверхностное давление Лй оказывается больше в результате ионизации монослоя, влияние которой может быть выражено величиной свободной энергии образования единицы поверхности S,F двойного электрического слоя (но Гельмгольцу). Для систем, включающих только одновалентные электролиты, имеем [c.218]

    На границе раздела фаз дисперсных систем с полярной дисперсионной средой возникает двойной электрический слой (ДЭС), образование которого обусловлено либо избирательной адсорбцией одного из ионов, присутствующего в среде электролита, либо поверхностной ионизацией вещества дисперсной фазы. [c.10]

    Несмотря на термодинамическую неустойчивость в атмосферных условиях, железные сплавы широко и успешно применяют, так как их коррозия протекает сравнительно медленно вследствие ряда кинетических ограничений элементарных процессов (оговоримся, что речь идет об электрохимической коррозии, которая происходит лишь при наличии на поверхности металла пленок электролитов, в отличие от химической, характерной для горячих газов). Так, анодный процесс растворения (ионизации) железа в электролите, в частности воде, приводит к образованию так называемого двойного слоя из гидратированных катионов у поверхности металла и избыточных электронов в последнем. Эти разноименно заряженные частицы взаимно притягиваются, устанавливается динамическое равновесие, при котором в целом поверхность металла остается электрически нейтральной, и его дальнейшее растворение прекращается. Однако если отвести избыточные электроны, создав электрическую цепь и наложив на железо положительный потенциал, то равновесие нарушится и возобновится анодное растворение железа. Нечто подобное происходит при коррозии под действием постоянного тока. [c.17]

    По другому, электрохимическому, варианту предполагается, что механизм адсорбционной пассивации заключается в том, что адсорбируемые на поверхности металла кислородные атомы образуют электрические диполи за счет частичной ионизации кислородных атомов электронами металла положительный конец диполя располагается в металле, а отрицательный — в двойном слое раствора. Образование сложного адсорбционно-ионного скачка потенциала (фиг. 30) вызывает сдвиг общего электродного потенциала в положительную сторону и ионизация металла уменьшается. Количество кислорода и при этом варианте пассивации меньше, чем требуется по расчету для создания мономолекулярного слоя. Характерным примером зависимости пассивности от количества кислорода, адсорбированного поверхностью металла по вышеупомянутому механизму, является анодная пассивация железа в щелочных растворах. [c.62]

    Различают три возможных механизма образования двойного электрического слоя. Согласно одному из ннх двойной электрический слон образуется в результате перехода нонов или электронов из одной фазы в другую (поверхностная ионизация). Например, с поверхности металла в газовую фазу переходят электроны, образуя со стороны газовой фазы электронное облако. Количественной характеристикой такого перехода может слуя ить работа выхода электрона. Интенсивность электронного потока увеличивается с повышением температуры (термоэлектронная эмиссия). В результате поверхность металла приобретает положительный заряд, а газовая фаза — отрицательный. Возникший электрический потен-инал на границе раздела фаз препятствует дальнейшему переходу электронов — наступает равновесие, при котором положительный заряд поверхности металла скомпенсирован отрицательным зарядом, созданным электронами в газовой фазе, т. е. формируется двойной электрический слой. [c.45]

    Впрочем, образотание двойного электрического слоя в результате избирательной адсорбции одного из ионов, присутствующих в дисперсионной среде, может происходить и тогда, когда достройки кристаллической решетки нет. Например, двойной электрический слой образуется на частицах парафина, диспергированного в слабом растворе щелочи, за счет избирательной адсорбции гидр-+ оксильного иона, который в данных условиях проявляет лучшую адсорбируемость, чем ион щелочного металла. Возникновение двойного электри- ческого слоя за счет ионизации мож- но проиллюстрировать образованием двойного электрического слоя на частицах водного золя двуокиси кремния. Молекулы 5102, находящиеся на поверхности таких частиц, взаимодействуют с дисперсионной средой, гидратируются и образуют кремневую кислоту, способную ионизироваться  [c.172]

    Возникновение двойного электрического слоя за счет ионизации можно проиллюстрировать образованием двойного электрического слоя на частицах водного золя двуокиси кремния. Молекулы 810а, находящиеся на поверхности таких частиц, взаимодействуют с дисперсионной средой, гидратируются и образуют кремневую кислоту, способную ионизироваться  [c.172]

    Физическая теория стойкости ионостабилизированных дисперсных систем построена на образовании двойного электрического слоя из ионов на поверхности частичек. Это определяет существование энергетического барьера, который препятствует сближению одноименно заряженных частичек на расстоянии, где действуют интенсивные молекулярные силы притяжения. Такой электрический слой, внешняя оболочка которого имеет диффузионную природу, образуется вследствие ионизации молекул, которые составляют поверхностную оболочку твердой фазы, или в результате адсорбции на поверхности твердой фазы одного из ионов из раствора электролита. [c.328]


    Чаще всего имеют дело с дугами с раскаленным катодом, температура которого составляет несколько тысяч градусов. Наиболее нагретой частью катода является катодное пятно. Усиленное испускание электронов (термоэлектронов) катодом есть одно из условий существования электрической дуги. Однако существуют дуги и с холодными электродами (например, ртутная дуга). Дуговой разряд в этом случае поддерживается автоэлект-ронной эмиссией катода, обусловленной туннельным прохождением электронов сквозь потенциальный барьер, образованный двойным электрическим слоем на поверхности катода. Не исключена также возможность,, что источником Эотектрических зарядов в дуге с холодными электродами, горящей при высоких давлениях, служит термическая ионизация нагретого газа около катода. [c.444]

    В растворителях с достаточно высокой диэлектрической проницаемостью задача определения дипольных моментов может осложняться частичной ионизацией растворенных веществ под воздействием поляризующего эффекта среды. В этих условиях возникает необходимость определения степени диссоциации исследуемого вещества на ионы и вкладов последних в измеряемую величину диэлектрической проницаемости раствора абл. обусловленных релаксацией ионных атмосфер Абри и образованием двойного электрического слоя на поверхности емкостных датчиков Дед . [c.157]

    Эмульгирующее действие высокомолекулярных веществ, таких, как желатин, казеин, поли- метакриловая кислота, метилцел-люлоза, поливиниловый спирт, а также их действие как защитных коллоидов, вероятно, можно объяснить энтропийным фактором. Впрочем, можно также допустить, что прямые эмульсии, стабилизованные защитными коллоидами, молекулы которых содержат ионогенные группы, устойчивы благодаря образованию на поверхности капелек двойного электрического слоя в результате ионизации этих групп. [c.376]

    При образовании на электродах газообразных продуктов возникает перенапряжение, вызванное образованием новой фазы —пузырьков газа. Это перенапряжение относительно невелико (порядка 70—100 мВ), но в ряде случаев именно газообразование может оказаться стадией, лимитирующей суммарный электродный процесс (например, при образовании пузырьков водорода на платинированной платине или палладиевой черни). А. И. Фрумкин еще в 1933 г. сделал вывод о зависимости скорости разряда — ионизации газообразных продуктов — от строения двойного электрического слоя. Согласно уравнениям теории замедленного разряда, эта скорость обусловлена 1) влиянием фгпотенциа-ла на концентрацию реагирующих ионов в двойном слое и 2) влиянием згпотенциала на энергию активации электродного процесса. [c.209]

    На основе [33, 34] можно считать установленным, что в катодный импульс тока происходит активация титана вследствие восстановления пассивирующего слоя кислорода. В следующий анодный цикл наряду с реакцией ионизации металла протекает адсорбция кислорода. При этом скорость роста новой фазы на поверхности металла может определяться скоростью диффузии пассивирующих частиц к поверхности электрода [18]. Другими словами, коррозия титана за отдельный импульс является параболической функцией длительности анодного цикла. Однако необходимо заметить, что подобные представления допустимы при двух условиях во-первых, образование пове1)хностного слоя кислорода происходит мгновенно, и, следовательно, в измеряемую величину коррозии не входят потери металла за время завершения адсорбции первого слоя кислорода, во-вторых, на поверхности металла возникает более чем мономоле-кулярный слой кислорода. Разумеется, допущение о мгновенной адсорбции кислорода с учетом известной зависимости скорости адсорбции частиц от времени [43] не может быть принято. Можно лишь предполагать, что вследствие медленного процесса перезаряжения двойного электрического слоя после изменения полярности тока необходимый анодный потенциал электрода достигается недостаточно быстро. Действительно, несмотря на все меры, которые были приняты для уменьшения постоянной времени поляризующей цепи, потенциал электрода смещался из каМодной области в анодную довольно медленно (рис. 6). [c.22]


Смотреть страницы где упоминается термин Ионизация и образование двойного электрического слоя: [c.146]    [c.155]    [c.146]    [c.178]    [c.146]    [c.144]    [c.61]   
Курс коллоидной химии (1976) -- [ c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой образование



© 2025 chem21.info Реклама на сайте