Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валин, идентификация

    Целью данной работы является разделение и идентификация аминокислот, смесь которых дается студенту в виде раствора. Задача разработана для гликокола (глицин гли), аланина (ала), валина (вал) и фенилаланина (фен). [c.36]

    К настоящему моменту (середина 1977 г.) определены структуры более 100 белков, больщинство которых являются ферментами. Точность этих измерений не настолько велика, как в случае малых органических молекул, так как все кристаллы белков обладают определенной долей неупорядоченности, вследствие чего раз-рещение ограничивается 0,2 нм. Это означает, что боковые радикалы с одинаковой геометрией различить не удается (например, валин от треонина или амидную группу от карбоксильной в остатках глутамата и аспартата). По этим данным, таким образом, нельзя определять полные аминокислотные последовательности. Идентификация таких спорных аминокислот должна быть поэтому основана на обычных методах определения последовательности (см. часть 23). Эти ограничения, однако, являются второстепенными для метода, дающего информацию о структуре и не имеющего себе равных по степени точности и объему [47]. [c.485]


    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Последующие пики для разных аминокислот различны. На пирограмме валина вслед за дв окисью углерода проявляется этилен, в то время как на пирограммах глицина и серина этилен отсутствует и вслед за двуокисью углерода проявляется аммиак. На пирограмме валина аммиак выходит вслед за этиленом. Для идентификации этилена из масс-спектра также приходится вычитать линию с т/е, равной 44 от предыдущего пика СОг. [c.50]

    Гидролизат энниатина (см. № 412) К-метил-/-лейцин К-метил- -изолей-цин 1 М-метил-/-валин. Идентификация 1 1) Бумажная 4) трет-Ршшл. спирт 98 [c.273]

Рис. 9.7.6. Изображение пространствениого строения центральной части участка 3-структуры ОПИТ. Десять остатков аминокислоты обозначены следующими буквами С — цистеин, F — фенилаланин, I — изолейцнн, Q — глутамин, R — аргинин, Т — треонин, V — валин, Y — тирозин. Водородные связи между группами NH и СО обозначены щтриховкой. Отметим, что протоны NH л-го остатка и протоны С"Н (п - 1)-го остатка, обозначенные стрелками, расположены очень близко. Наблюдаемые NOE позволяют провести последовательную идентификацию резонансных сигналов. (Из работы [9.31].) Рис. 9.7.6. <a href="/info/604697">Изображение пространствениого</a> строения <a href="/info/1585715">центральной части</a> участка 3-<a href="/info/1740490">структуры ОПИТ</a>. Десять остатков аминокислоты обозначены следующими буквами С — цистеин, F — фенилаланин, I — изолейцнн, Q — глутамин, R — аргинин, Т — треонин, V — валин, Y — тирозин. <a href="/info/1038770">Водородные связи между</a> группами NH и СО обозначены щтриховкой. Отметим, что протоны NH л-го остатка и протоны С"Н (п - 1)-го остатка, <a href="/info/1451465">обозначенные стрелками</a>, расположены очень близко. Наблюдаемые NOE позволяют провести <a href="/info/250204">последовательную идентификацию</a> резонансных сигналов. (Из работы [9.31].)
    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]


    Разделительный эффект в двумерных опытах. Для надежной идентификации ДНФ-производных, принадлежащих к относительно большой группе нерастворимых в кислоте и экстрагируемых эфиром ДНФ-аминокислот, как правило, требуется двумерная хроматография. Для этого в первом направлении мы применяем толуол -систему Бизерте и Остё [45] (система № 1), а во втором направлении — системы № 2—5 на выбор. На рис. 165 показано разделение стандартной смеси по 2 (хз ДНФ-аминокислот при комбинации растворителей № 1 и 2. Не делятся группа лейцина, руппа валина, ди-ДНФ-лизин и ди-ДНФ-тирозин. [c.420]

    Из приведенного выше обсуждения очевидно, что аминокислотная последовательность пептида может быть определена по его масс-спектру, если можно идентифицировать пики, обусловленные расщеплением пептидной связи. Идентификация пиков аминокислотного типа фрагментации может быть облегчена подходящим выбором защитных групп. Ацилирование М-концевой аминогруппы пептида эквимолекулярной смесью уксусной и три-дейтероуксусной кислот (или смесью СОз-и СНз-декановых кислот) [25] приводит к появлению пар пиков равной интенсивности, отличающихся на 3 м. ед., которые соответствуют ионам аминокислотного типа фрагментации. Можно использовать другие смешанные реагенты, содержащие ацильные группы, например такие, как эквимолекулярная смесь гепта- и октадекано-вых кислот [18], которые для всех ацилсодержащих ионов дают пары пиков, отличающихся на 14 м. ед,, тем самым облегчая интерпретацию масс-спектров. В некоторых природных олигопептидах дублеты с разницей в 14 м. ед, могут быть вызваны присутствием различных аминокислотных гомологов, например валин или изолейцин в грамицидинах А, В и С [32]. Однако лучше использовать смешанные, содержащие СНз- и СОз-ациль-ные цепи. [c.198]

    С высоким сродством к электронам устраняет необходимость калибровки при детектировании и сводит к минимуму очистку образцов перед их хроматографическим определением, что особенно важно при анализе природных продуктов. ]У1етиловые эфиры ДНФ-производных были использованы для идентификации аминокислот, образующихся при гидролизе полипептида грамицидина А [58] (рис. 10). Аланин, валин, глицин, лейций и изолейцин определялись количественно с точностью до 2 % при хроматографическом разделении на двухметровой колонке с силиконовой жидкой фазой ЗЕ-ЗО. Наиболее полное разделение некоторых нейтральных алифатических и дикарбоновых аминокислот в виде фенилтиоги-дантоинов и метиловых эфиров ДНФ-производных получено при анализе на колонке с фторированным силиконовым полимером РР-1 и низким содержанием стационарной жидкой фазы [59]. [c.268]

    С целью идентификации летучих продуктов пиролизу при 500° С в течение 10—12 сек. были подвергнуты алифатические моноаминокарбоновые кислоты глицин, аланин, валин, изолейцин [122]. Разделение продуктов пиролиза проводили при 25,46 и 55°С на колонках с активированным углем, силикагелем, а также на колонке с 2,4-днметилсульфоланом на хромосорбе Р нри детектировании по теплопроводности. Хроматограммы продуктов пиролиза — двуокиси и окиси углерода, метана, этана, полученные на колонках с активированным углем и силикагелем, различались в основном количественным соотношением. На колонке с 2,4-ди-метилсульфоланом были идентифицированы углеводороды С — g. [c.63]

    Аргинин 1 фенилаланин ] пролин ] лейцин + изолейцин I валин лизин тирозин I аланин 1 треонин 1 глицин дженколевая кислота 1 серин лан-тионин I глутаминовая кислота аспарагиновая кислота цистин цистиновая кислота. Идентификация (порядок — в первой, фенольной, хроматограмме) [c.271]

    Новая аминокислота тирозин триптофан I фенилаланин [ метионин лейцин I изолейцин валин 1 новая аминокислота пролин треонин гистидин I аланин новая аминокислота I серинI глицин аргинин лизин I глутаминовая кислота ] аспарагиновая кислота. Идентификация и определение (порядок — в первой, коллидиновой, хроматограмме) [c.271]

    На всех пирограммах первый пик принадлежит окиси, второй — двуокиси углерода. Если первое соединение идентифицируется достаточно надежно, то для идентификации второго необходимо вычесть из масс-спектра линию с т/е, равную 28, появляю-щ юся от предыдущего соединения вследствие недостаточно хорошего разделения первых двух пиков. Табличный масс-спектр двуокиси глерода и масс-спектр продукта пиролиза валина следующий  [c.49]

    Для идентификации аминокислот наиболее широко используются их ФТГ-производные. В работе [54] описано разделение двадцати пяти ФТГ-аминокислот градиентным элюированием на колонке с ультрасфер-ODS (рис. 2.3). Как показывают данные этой работы, разрешающая способность колонки сильно зависит от pH и ионной силы элюента, скорости потока, а также от температуры предварительной и основной колонок. По этой причине часто трудно установить точное положение пиков, отвечающих ФТГ-производным основных и кислых аминокислот. Даже незначительное изменение pH сильно сказывается на времени удерживания ФТГ-Asp и ФТГ-Glu, а ФТГ-His и ФТГ-Arg могут при этом элюироваться одновременно. С увеличением pH от 3,5 до 6,0 уменьшается время удерживания производных кислых и основных аминокислот, тогда как увеличение концентрации ацетат-ионов при постоянном значении pH приводит к уменьшению времени удерживания только ФТГ-произвОдных основных аминокислот. Установлено также, что оптимальное разрешение пиков, отвечающих ФТГ-производным метионина, валина, лизина и изолеицина, достигается при скорости потока 1,3 мл/мин. Полный анализ занимает 32 мин, коэффициент вариации составляет от 0,3 для ФТГ-валина до 2,9 для ФТГ-(5-карбоксиметил)цистеина (приведенные значения получены по результатам 27 опытов). [c.54]


    Ларсен с сотрудниками [24] с успехом применили нитроиндандион для идентификации аминокислот в микроанализе. Для этого нагревают небольшое количество аминокислоты с насыщенным раствором нитроиндандиона на объективном стеклышке. Полученные кристаллы отсасывают, тщательно высушивают над микропламенем и в поляризационном микроскопе определяют коэффициент преломления. По кристаллографическим и оптическим данным можно определить следующие соединения /-аланин, /-аспарагиновую кислоту, /-цистеин, /-глутаминовую кислоту, глицин, /-гистидин, /-оксипролин, 3,5-дийод-/-тирозин, /-изолейцин, /-лнзпн, /-пролин, /,/-сер,ин и /,/-валин. [c.35]


Смотреть страницы где упоминается термин Валин, идентификация: [c.149]    [c.163]    [c.514]    [c.184]    [c.172]    [c.312]    [c.312]    [c.163]    [c.54]    [c.70]    [c.163]    [c.145]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Валин



© 2024 chem21.info Реклама на сайте