Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссия ионов вторичных метастабильные

    Вторичная электронная эмиссия под действием положительных ионов и метастабильных атомов [c.98]

    Вначале вторичные эффекты связывали с выбиванием электронов из катода положительными ионами. Теперь мы знаем, что эмиссия вторичных электронов обусловлена не только потенциальной и кинетической энергией положительных ионов, но также и другими процессами, как, например, приходом на катод фотонов, нейтральных и метастабильных частиц (стр. 98). Таким образом, отклонение кривой рис. 89 от прямой объясняется тем, что при больших межэлектродных расстояниях электроны, испускаемые катодом, состоят из двух групп. Одна группа — первичные электроны — обусловлена излучением внешнего источника и создает постоянную плотность тока 7 другая группа — вторичные электроны, которые для простоты могут рассматриваться как электроны, выбитые положительными ионами, ударяющимися о катод. Число вторичных электронов равно произведению числа положительных ионов, приходящих на катод — 1 на один первичный электрон), на число вторичных электронов У) образованных каждым пришедшим положительным ионом. [c.184]


    Благодаря размножению в области между катодом и границей отрицательного свечения число электронов, способных ионизовать, увеличивается и возникает большое число положительных ионов, образующих сильный положительный объемный заряд. Эти положительные ионы двигаются через темное катодное пространство и ударяются о катод. Метастабильные атомы, быстрые невозбужденные атомы (возникшие благодаря перезарядке) и кванты излучения также попадают на катод и вызывают вторичную электронную эмиссию. Чтобы имело место стационарное состояние, каждый электрон, испущенный катодом, должен произвести такое число ионизаций и возбуждений, которое необходимо для освобождения еще одного электрона с катода. [c.227]

    В теории разряда Таунсенда из всех возможных элементарных процессов выделения электронов из катода только этот процесс и учитывался. Введённый Таунсендом коэффициент поверхностной ионизации у, равный числу электронов, эмиттируемых катодом, приходящихся на каждый ударяющийся о катод положительный ион, принимали за количественную меру вторичной эмиссии под действием положительных ионов. В действительности дело обстоит несколько сложнее. Чтобы получить значение-коэффициента вторичной эмиссии электронов при ударах о катод положительных ионов, нельзя просто приравнивать этот коэффициент коэффициенту у, а надо ещё учитывать фотоэффект с катода под действием коротковолновых излучений, возникающих в разряде, и в известной мере также действие метастабильных атомов и быстрых нейтральных частиц. Поэтому имеющиеся па отнощению к коэффициенту вторичной эмиссии экспериментальные количественные данные должны рассматриваться как верхний предел и нередко относятся к суммарному коэффициенту Т-Но и надёжных измерений суммарного у очень мало, особенна если принять во внимание, что как у, так и действительный коэффициент вторичной эмиссии — назовём его уо — должны зависеть как от природы газа, так и от природы катода. [c.188]

    Имеется еще один метод исследования метастабильных ионов, образующихся во второй бесполевой области. Поскольку кинетическая энергия метастабильных ионов меньше энергии нормальных ионов, эти два типа ионов можно разделить, подавая на коллектор отражающий потенциал. Если энергия поступательного движения нормальных ионов равна V вольт, а метастабильных — V вольт, то при отражающем потенциале Уг, превышающем V (а следовательно, и V ) все ионы будут отражаться и, попадая на металлическую пластину, вызывать эмиссию вторичных электронов, которые будут регистри-)оваться сцинтилляционным фотоумножителем (рис. 5.6). Если же отражающий потенциал Уг меньше V, но больше V, то отражаться будут только метастабильные ионы, вызывая в свою очередь эмиссию вторичных электронов. Таким образом, указанный метод позволяет при отражающем потенциале Ут>У получить обычный масс-спектр, а затем, после изменения отражающего потенциала так, чтобы выполнялось условие У>Fr>l записать спектр только метастабильных ионов, образую- [c.188]


    Можно полагать, что медленный ион инертного газа, приближающийся к поверхности металла на расстояние в несколько атомных радиусов, вырывает электрон из металла и захватывает его на один из своих верхних уровней. Образовавшийся атом остается некоторое время в метастабильном состоянии и, подойдя еще ближе к поверхности, передает свою энергию возбуждения металлу, в результате чего происходит эмиссия фотоэлектрона. Однако против этой точки зрения имеется возражение, заключающееся в том, что скорости вторичных электронов должны были бы соответствовать уравнению Эйнштейна (3.49), тогда как наблюдавишеся скорости оказываются в действительности меньше. [c.99]

    Другой причиной расхождения выражения (7.22) с экспериментальными данными является электродный эффект. Вторичные электроны испускаются катодом, когда о него ударяются положительные ионы, фотоны или метастабильные атомы, при наличии у катода достаточно сильного поля, понижающего потенциальный барьер (автоэлектронная эмиссия), или когда положительные ионы образуют двойной слой на сложных катодах, облегчая тем самым вытягивание электронов из катода. Совершенно очевидно, что, помимо величины микрополей у поверхности катода, на эмиссию существенным образом влияют также размеры, форма и микроструктура поверхности. [c.202]

    Как и ко всем другим элементарным процессам, к процессу вторичной эмиссии за счёт потенциальной энергии положительного иона приложимы мето Ды волновой механики, позволяющие подсчитать вероятность перехода электрона из металла на тот или другой уровень энергии в атоме, образуемом при нейтрализации положительного иона [598]. При этом наиболее вероятным оказывается переход на такой уровень, на котором энергия электрона близка к энергии, которой он обладает как электрон проводимости в металле. Эти представления приводят к следующей картине рассматриваемого элементарного процесса. При приближении положительного иона к поверхности металла, когда ион находится от этой поверхности ещё на некотором, хотя и малом, расстоянии, происходит переход к иону первого электрона. В результате этого перехода получается атом не в нормальном состоянии, а в возбуждённом. Затем путём нового элементарного акта происходит освобождение второго электрона проводимости из металла за счёт энергии возбуждения, подобно тому как в объёме газа это имеет место при неупругом соударении И рода. Справедливост такой точки зрения, как это показывают опыты, подтверждается тем, что эмиссия электронов из металла наблюдается также при непосредственном воздействии на катод имеющихся в газе при разряде метастабильных атомов [585, 586]. В работах [585, 586] указан способ получить пучок метастабильных атомов гелия, заставляя ионы гелия падать под очень острым углом на металлическую поверхность. Скорости вторичных электронов, освобождаемых метастабильными атомами гелия, лежали в пределах. от 2 вольт до (0 — 9), где Им —энергия метаста-бильного атома, ср — работа выхода электрона из металла в эл.-в. В случае разряда в гелии при катоде из молибдена скорость вторичных электронов, освобождаемых метастабильными атомами (С/м = 19,77), достигала 15 вольт. Число метастабильных атомов, не теряющих своей энергии на поверхности металла и, следовательно, отражаемых в качестве метастаби-лей же в зависимости от условий опыта, лежало в пределах от 10 до 50%. Наличие процесса поверхностной ионизации, производимой метастабильными атомами, и значение этого эффекта в разряде показаны также опытами Спивака и Рейхруделя [599]. О поверхностной ионизации ударами положительных ионов смотрите также [593, 594, 635—637, 639, 641, 657, 658, 667, 668], отрицательных — [671]. [c.191]

    При собирании положительных ионов на катод поверхностью последнего могут быть испущены вторичные электроны, в результате чего в счетчике возникает новый разряд (через несколько сот микросекунд после первого), который совершенно не связан с исследуемым источником излучения. Для устранения такого рода самовозбуждающихся разрядов нашли применение две схемы. В одной из них используется гасящий контур, поддерживающий напряжение на счетчике ниже порога гейгеровского режима, когда положительные ионы приходят на катод. Однако гораздо более широкое распространение получили так называемые самогасящиеся счетчики Гейгера — Мюллера, в которых эмиссия вторичных электронов подавляется благодаря наличию многоатомного пара или газа (таких, как спирт, эфир или метан) в обычном рабочем газе (например, аргон). Подобные смеси эффективны, по-видимому, в силу того, что благодаря переносу электронов все положительные ионы при движении к катоду конвертируются в органические многоатомные ионы, которые могут диссипи-ровать энергию за счет предиссоциации, и вероятность эмиссии вторичных электронов поэтому очень сильно уменьшается. Они могут также гасить метастабильные состояния атомов аргона. Существенно, что органическая добавка после 10 —10 отсчетов в значительной мере оказывается израсходованной многоатомный рабочий газ тетраметилсвинец не тре-<бует добавок. Рабочие газовые смеси, содержащие в качестве гасящих [c.151]


    Концентрации электронно-возбужденных частиц измеряются по интенсивности спектров их излучения в видимой, ультрафиолетовой (УФ) и ближней инфракрасной (ИК) областях спектра [52— 55]. Наибольшие затруднения вызывает измерение концентраций метастабильных частиц следствие малости вероятностей радиационных переходов с них, а также концентрации атомов на нижних возбужденных уровнях, поскольку линии излучения (резонансные) лежат, как правило, в области вакуумного ультрафиолета и реабсорбированы. Для их регистрации используются спектральные методы поглощения излучения [51—53, 148], которые хороши при концентрациях поглощающих возбужденных молекул выше 10 —Ю см- [148]. Для атомов предельные концентрации несколько ниже, так как вся энергия перехода сосредоточена в одной узкой линии [274]. В послесвечении разрядов возможно детектирование с помощью детекторов вторичной электронной эмиссии [275] либо косвенные методы — передача возбуждения на излучающие состояния малой примеси, например ртути [276—278]. Использование косвенных методов в разрядах затруднено, поскольку возможно влияние на сигнал других возбужденных частиц, ионов и электронов. Тем не менее метод малой излучающей добавки может быть весьма эффективным, и для его осуществления в плазме требуется специальное исследование механизма возбуждения регистрируемого излучения [139]. [c.50]

    Такой же принцип получения метастабильных атомов Не был использован для получения пучка поляризованных метастабильных атомов в состоянии 2 5 [149]. Источником возбужденных атомов Не (2 5, 2 5) является электронный удар, осуществляемый в электронно-оптической системе, состоящей из электронной пушки с комбинацией электростатической и магнитной фокусировок, формирующих пучок электронов колли-неарной с молекулярными пуч1ками. Очистка лучка от Не(2 5) и ионов производится при помощи гелиевой лампы и поперечного электрического поля. Полученный пучок по оценке, основанной на измерении вторичной эмиссии электронов с поверхности из нержавеющей стали, имеет интенсивность 2-10 атом/ср-с. Атомы Не(2 5) затем попадают в область слабого магнитного поля ( 10 Гс), которое определяет ось квантования. В этой же области они накачиваются излучением с Л =1,08 мкм, поляризованным по кругу и падающим в направлении магнитного поля. Это приводит к увеличению заселенности магнитных подуровней с т = 1 или —1 в зависимости от знака круговой поляризации. [c.174]


Смотреть страницы где упоминается термин Эмиссия ионов вторичных метастабильные: [c.91]    [c.292]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Метастабильность

Эмиссия

Эмиссия Эмиссия



© 2024 chem21.info Реклама на сайте