Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железа соединения, восстановление гидразином

    Восстановлением соединений 1(1, е либо железом в присутствии уксусной кислоты, либо гидразином в присутствии скелетного никеля были получены соответствующие амины lg, И с выходом до 80% (схема 4). Следует отметить, что восстановление гидразином в присутствии скелетного никеля облегчает выделение конечных продуктов. [c.190]

    В процессе очистки неорганические соединения ртути восстанавливают до металлической ртути, которую отделяют от воды отстаиванием, фильтрованием или флотацией. Органические соединения ртути сначала окисляют с разрушением соединения, затем катионы ртути восстанавливают до металлической ртути. Для восстановления ртути и ее соединений предложено применять сульфид железа, боргидрид натрия, гидросульфит натрия, гидразин, железный порошок, сероводород, алюминиевую пудру и др. [c.70]


    Метод восстановления также применяют для очистки сточных вод от соединений ртути. Их восстанавливают до металлического состояния, а образовавшуюся ртуть отделяют от воды (отстаиванием, фильтрованием или флотацией). В качестве реагента-восстановителя используют алюминиевую пудру, железный порошок, гидросульфид натрия, гидразин, сульфид железа и др. [c.126]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Если в пробе содержатся значительные количества мышьяка и сурьмы, то основную часть их отделяют дистилляцией в форме летучих трихлоридов, для чего солянокислый раствор упаривают до объема 3—5 мл, разбавляют в 2—3 раза водой, добавляют 1 г солянокислого гидроксиламина или гидразина и для полного восстановления ионов железа III какого-либо сильного восстановителя (аскорбиновую кислоту, порошок металлического железа, алюминиевую стружку и т.п.). Раствор выпаривают досуха и продолжают нагревание до прекращения выделения белых паров соединений мышьяка и сурьмы. Добавляют 5—10 мл соляной кислоты d 1,19 и поступают так, как в отсутствие этих элементов. [c.70]

    Строение аспергилловой кислоты было выяснено на основании следующих данных . Ее состав отвечает суммарной формуле 12H20O2N2. Она представляет собой одноосновную кислоту, но содержит также одну основную группу (образует хлоргидрат с т. пл. 178 ). Дает ряд солей, из которых наиболее характерна зеленая медная соль с т, пл. 198°. При восстановлении гидразином аспергилловая кислота (99) переходит в дезоксисоединение i HjoONj (102), отличающееся от аспергилловой кислоты тем, что оно содержит на один атом кислорода меньше. Оба эти соединения имеют резкий максимум в ультрафиолетовой области при 325 (для сравнения следует указать, что а-пиразолоны имеют максимум при 315 Ш[х). Как сама кислота, так и ее дезоксипроизводное оптически активны. Оба соединения весьма устойчивы по отношению к кислотному и щелочному гидролизу и к окислению перманганатом калия. Свойства самого антибиотика сильно напоминают свойства гидроксамовых кислот (интенсивное красное окрашивание с хлорным железом). [c.69]


    Силикат натрия - ингибитор коррозии смешанного типа - образует защитные ферросиликатные пленки сложного состава на поверхности стали при взаимодействии силикатов-анионов и соединений Ре(П), содержащихся в продуктах коррозии углеродистой стали. Так как доля соединений железа (II) в общей массе продуктов, образующихся при коррозии углеродистой стали в аэрированных средах, незначительна (не более 2-3%), возможным путем повышения защитных свойств ферросиликатных пленок и ускорения их формирования является восстановление соединений Ре(Ш) в продуктах коррозии до Ре(П). Эту задачу позволяет решить ингибирующая композиция, состоящая из силиката натрия и гидразина (в виде гидразин-гидрата), выступающего в роли восстановителя [138, 142]. [c.26]

    В гомолитических реакциях перенос электрона возможен не только по одноэлектровному, но и по многоэлектронному механизму. Многоэлектронные переходы между катализатором и реагентами реализуются, если в активный центр катализатора входит несколько атомов переходного металла (например, в кластерах). Так, при разложении пероксида водорода активны комплексные соединения, содержащие два иона железа(Ш), а при восстановлении азота до гидразина - комплексные соединения, содержащие два и более ионов ванадия(П). [c.639]

    Элементарный иод можно легко определить после предварительного восстановления на холоду гидразином. Определению не мешают элементы, не осаждаемые родамином С. Висмут, железо, цинк, никель, индий, свинец, медь и ртуть могут присутствовать в большом избытке. Мешает определению иодид-ионов сурьма (П1), которая концентрируется на электроде одновременно с иодом в виде аналогичного соединения. Влияние сурьмы можно устранить, восстановив ее до элементарного состояния или связав в электронеак-тивный комплекс. Так, в присутствии 10% цитрата калия 100-крат-ные количества сурьмы(П1) не мешают определению иодид-ионов (концентрации Sb + и I-—6-10 и 6-10 г-ион/л). Максимальный ток электрохимического растворения осадка, содержащего иод, в этом случае несколько ниже, чем в отсутствие цитрат-ионов. При использовании калибровочных графиков или метода добавок это не имеет значения. [c.104]

    Прямые реакции с иодом. Стандартный раствор иода, который является слабым окислителем, можно применять для титрования сильных восстановителей. Широкие возможности его применения можно проиллюстрировать кратким перечислением некоторых примеров титрование As в гидрокарбонатном растворе в присутствии крахмала в качестве индикатора определение олова после восстановления его до Sn свинцом, сурьмой, алюминием, никелем или железом определение таллия (III) после восстановления его до таллия (I) определение сульфидов либо прямым титрованием раствором иода, либо косвенным способом, основанным на добавлении избытка иода и последующем обратном титровании определение тиоацетамида титрованием иодом как основа микроопределения ионов тяжелых металлов определение сульфитов обратным титрованием раздельное определение гипофосфита и фосфита в одной пробе титрованием при двух различных значениях pH определение цианидов по количественной реакции с иодом в щелочной среде определение титрованием иодом ряда органических соединений [78], например, полифенолов, аскорбиновой кислоты, меркаптанов, мочевой кислоты, гидразинов, фенолов, дитиогликолевой кислоты, металлорганических меркаптидов, алкильных соединений алюминия и др. Йодные числа применяют в качестве меры нена-сыщенности жиров и масел. Подробное описание многих методов анализа с использованием иода можно найти в руководстве Кольтгофа и Белчера [1]. [c.399]

    Методы восстановления фосфоромолибдатного комплекса. Восстановление фосфоромолибдатного комплекса приводит к получению соединения синего цвета. Следует избегать, насколько это возможно, восстановления избытка прибавляемого молибдата. Большое значение в этом отношении имеет соблюдение надлежащего pH. Содержание свободной серной кислоты должно быть в границах от 0,75 до 1,25 н. Поглощение света образующимся синим продуктом восстановления фосфоромолибдата происходит сильнее всего при Я, = 830 ммк. (Тогда молярный коэффициент светопоглощения Ё = 26 800.) Молибденовая синь , получающаяся при восстановлении самого молибдена (VI), поглощает свет преимущественно при Я = 630 ммк. Поэтому измерение оптической плотности надо проводить при длине волны возможно более близкой к 830 ммк. Окраска устойчива в течение 12 ч. Для восстановления фосфоромолибдата были предложены различные реактивы. По-ви-1имому, наилучшие результаты дают железо (II) гидразин  [c.1092]

    Обнаружение Bi + в виде тиокарбамидного комплекса. Обнаружению ВР+ в виде окрашенного в желтый цвет тиокарбамидного комплекса мешают железо(III) и ртуть(1). Железо(1П) образует окрашенные соединения с роданид-ионом, который обычно присутствует в карбамиде. Мешающее влияние Ре + устраняют восстановлением его до Fe2+ солянокислым гидразином. [c.151]


    Однако шестивалентный вольфрам в аналогичных условиях столь легко не восстанавливается. Соли четырехвалентного церия в кислой среде быстро восстанавливаются с образованием бесцветных соединений трехвалентного церия [38, 78]. Так называемая черная окись празеодимия, которой иногда приписывают формулу PГвO , количественно восстанавливается,гидразином до гидроокиси празеодимия при смешении горячих растворов обоих реагентов [79]. Соединения трехвалентного железа [27, 32, 42, 80, 81] и трехвалентного кобальта [82] при действии сульфата гидразина в кислой среде переходят в соответствующие соединения этих элементов в двухвалентном состоянии. Двуокись свинца восстанавливается до соединений двухвалентного свинца как в кислой, так и в щелочной среде [27, 32]. Гидразин бьш использован также для восстановления растворов, содержащих пятивалентный ванадий [6, 83, 84]. В зависимости от кислотности среды восстановление может приводить к образованию соединений либо четырех, либо трехвалентного ванадия [40]. [c.133]


Смотреть страницы где упоминается термин Железа соединения, восстановление гидразином: [c.200]    [c.321]    [c.139]    [c.121]    [c.159]    [c.876]   
Химия гидразина (1954) -- [ c.133 , c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Железа ато-соединения



© 2025 chem21.info Реклама на сайте