Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интенсификация контактных систем

    Мощным средством интенсификации сернокислотного производства является повышение концентрации сернистого ангидрида в газе, достигаемое полной или частичной заменой воздуха кислородом. При полной замене воздуха кислородом производительность основного оборудования контактной системы увеличивается в 5—7 раз. Однако получение самого кислорода связано с большими капиталовложениями и высоким расходом электроэнергии, поэтому стоимость кислорода и соответственно серной кислоты при работе на кислороде зависит главным образом от стоимости электроэнергии. [c.319]


    Рассмотрены интенсификация процесса пиролиза и тепловой работы промышленных печей производства этилена и его технико-экономические показатели. Описана система управления контактным пиролизом в реакторе с восходящим потоком, дано технико-экономическое обоснование выбора сырья для контактного пиролиза. Книга рассчитана на инженерно-технических работников газовой, нефтехимической и химической промышленности. [c.2]

    Исследовали гидродинамику аппарата типа центробежного эжектора на системе вода — воздух Основная отличительная особенность аппарата заключается в том, что здесь с целью интенсификации тепло- и массообмена используется новый контактный элемент. Этот элемент представляет собой центробежное колесо, состоящее из концентрических частей и снабженное радиально расположенными диффузорами, имеющими по длине поперечные и продольные щели. [c.180]

    Внедрение в промышленность контактно-башенного способа производства серной кислоты является одним из путей интенсификации существующих нитрозных систем. Применение такого способа с частичным окислением концентрированного сернистого газа в форконтактном аппарате позволит разгрузить существующие башенные системы (на 30—50%), за счет этого увеличить их мощность и получить концентрированную серную кислоту. Это по- [c.110]

    Эффективность систем охлаждения лопаток газовых турбин может быть увеличена посредством применения различных методов интенсификации процесса теплообмена. В настоящей работе приводятся результаты исследования локальных коэффициентов теплоотдачи за решеткой и внутри решетки цилиндрических интенсификаторов, установленных в плоском канале. В результате проведенных исследований определено влияние геометрических и гидродинамических параметров решетки интенсификаторов на интенсивность локального теплообмена. Интенсивность теплообмена внутри решетки интенсификаторов неравномерна по периметру канала коэффициент теплоотдачи в центральной зоне канала увеличивается в 2,5—3 раза, а в угловой — в 3—4 раза по сравнению с коэффициентом теплоотдачи в гладком канале. Установлен диапазон основных геометрических и гидродинамических параметров решетки интенсификаторов, определяющих целесообразность использования данного типа интенсификаторов в системах охлаждения. Для выбора наиболее эффективных и рациональных систем охлаждения лопаток газовых турбин проанализированы вопросы по учету контактных термических сопротивлений. Выполнена классификация тепловых контактов и разработана методика расчета контактной проводимости в воздушных зазорах. [c.8]


    Основу этой книги составляет рассмотрение закономерностей контактных взаимодействий и кинетики процессов структурообразования в высококонцентрированных дисперсных системах в условиях динамических (механических) воздействий на них в присутствии поверхностно-активной среды с целью обоснования путей и разработки методов интенсификации и оптимизации гетерогенных химико-технологических процессов в таких системах, а также процессов получения высоконаполненных твердой фазой дисперсных материалов. [c.13]

    Речь идет о регулировании поверхностной энергии (а значит, и энергии взаимодействия дисперсных фаз), в частности, с помощью поверхностно-активных веществ различной химической природы и строения, а также электролитов. Для изыскания методов регулирования существенное значение приобретает установление закономерностей влияния на свойства дисперсных систем химических факторов в сочетании с одновременным воздействием механических (вибрационных), ультразвуковых, электрических и других полей. Это объясняется тем, что большинство реальных химико-технологических процессов осуществляется в динамических условиях. Поэтому решение проблемы управления технологическими процессами с участием дисперсных систем требует анализа поверхностных явлений и прежде всего контактных взаимодействий между дисперсными фазами, а значит, процессов образования и разрушения дисперсных структур в условиях динамических воздействий на системы. Специфика нового подхода к проблемам технологии дисперсных систем и материалов состоит в следующем. Реализация высоких значений дисперсности и концентрации твердых фаз в жидкой и газовой средах как весьма эффективного пути интенсификации гетерогенных процессов и повышения качества дисперсных материалов связана с необходимостью разрешения коренного противоречия современной технологии. Суть этого противоречия заключается в том, что по мере увеличения дисперсности и концентрации твердых фаз (и именно вследствие этого) резко возрастают вязкость и прочность структур, самопроизвольно возникающих в дисперсных системах. [c.9]

    По семилетнему плану развития народного хозяйства СССР увеличение производства серной кислоты предусматривается путем интенсификации действующих предприятий и главным образом за счет строительства новых преимущественно контактных установок. Проектируемая мощность одной контактной системы от 360—400 до 500 т серной кислоты в сутки. Одновременно с усовершенствованием технологического оборудования (печи для обжига сырья, контактные аппараты, насосы, кислотные холодильники и др.) значительное внимание уделяется улучшению качественных показателей работы повышению степени использования сырья (колчедана до 90—92%, серы до 94—95%), уменьшению расхода электроэнергии, росту производительности труда, снижению себестоимости продукции и т. д. Намечена также существенная реконструкция действующих заводов замена механических полочных печей печами для обжига колчедана в кипящем слое, переоборудование контактных отделений с заменой четырехполочных контактных аппаратов пятиполочными, применение центробежных погружных насосов для перекачки серной кислоты, использование новых антикоррозионных материалов и введение ряда других усовершенствований. [c.10]

    Один из способов ускорения процесса массообмена — увеличение, скорости взаимодействующ,их фаз, за счет чего увеличивается турбулентность двухфазного потока, однако с увеличением скорости резко возрастает пено- и брызгоунос, устранить который очень трудно. Поэтому, например, в барботажных колоннах скарость пара, рассчитанная на полное сечение колонны, не превышает 1 — 1,5 м/с. В настоящее время ведутся усиленные работы по интенсификации процессов массообмена между жидкостью за счет приложения к системе дополнительной энергии. Был разработан и освоен в промышленности ряд аппаратов с вращаюш,имися элемектами, в которых для интенсификации цроцесса применяется центробел<ная сила, и ряд скоростных аппаратов, использующих энергию потока газа или жидкости. На рис. 123 приведена классификация ректификационных и абсорбционных аппаратов по типу контактного устройства. [c.136]

    На первой стадии разработанной технологии реализовано совмещение процессов абсорбции паров НЫОз и процессов улавливания ее тумана с разработкой принципиально новых контактных устройств. На второй стадии комплексной технологии реализовано совмещение процессов каталитического разложения аммиачных солей (образующихся из смеси остатков НЫОз и ННз) и процессов селективного восстановления оксидов азота с разработкой нового катализатора для очистки залповых газовых выбросов. На третьей стадии реализовано совмещение процессов утилизации остатков NHз после каталитической газоочистки от оксидов азота и обеспечена полная утилизация тепла горячих отходящих газов. Кроме того, на этой стадии реализованы принципиально новые подходы к интенсификации процесса концентрирования Н2804. Достигнуто совмещение процесса абсорбции паров Н2 04 в режиме без образования тумана с процессом десорбции паров воды в режиме без образования ЗОг. Для этой цели потребовалось создание принципиально новых конструкций аппаратов. Новый подход к решению проблемы позволяет объединить все источники кислотных газовых выбросов завода в единой надежной системе газоочистки. [c.329]


    Анализ патентов показывает, что основное внимание конструкторов при разработке контактных устройств для системы масло-фенол уделяется не интенсификации взаимодействия фаз, а поискам путей улучшения условий коалесценции образовавшейся дисперсии. Так, например, тарел- [c.24]

    В основе многих производств химической и смежных отра-, слей промышЛекности лежат процессы переработки газожидкостных систем. К таким процессам относятся абсорбция и десорбция газов, испарение и конденсация жидкостей, улавливание твердых и туманообразных примесей из газовых смесей, тетлообмен при неоосредственном соприкосновении жидкой и газовой фаз и другие процессы между жидкостью и газом. Интенсификация диффузионных и подобных им процессов связана с их проведением в интенсивных режимах развитой турбулентности при больших скоростях потоков газов и жидкостей. Турбулизация газожидкостной системы приводит к увеличению интенсивности массообменных аппаратов. В таких режимах работают рассматриваемые в настоящей книге пенные аппараты (ситчатые колонны) различных видов, аппараты с орошаемой взвешенной насадкой, аппараты с вертикальными контактными решетками и полые скрубберы с разбрызгиванием жидкости, позволяющие резко повысить производительность единицы объема оборудования. Именно Эти аппараты были предметом многолетних исследований авторов монографии, которые систематизировали и обобщили наряду с собственными данные и других советских и иностранных ученых. - <  [c.8]

    К началу I пятилетки (выполнение первого пятилетнего плана началось 1.0Х.28 г.) сернокислотная промышленность располагала 29 контактными 2 башенными и 33 камерными системами общей мощностью 349 тыс. т. К концу 1 пятилетки число контактных установок увеличились до 37, башев-ных — до 16, а камерных снизилось до 16. Общая мощность сернокислотных заводов составляла 834 тыс. т, т. е. увеличилась за пятилетие в 2,4 раза. Это было достигнуто главным образом в результате строительства башенных систем и интенсификации действующих производств. Для обеспечения выпуска удобрений строили башенные системы, так как они требуют меньших капитальных затрат и дают возможность получения более дешевой кислоты. К тому же в то время строили значительно более мощные башенные системы (40 тыс. т в год), чем контактные (всего на 10—12 тыс. т). Самый крупный по тому времени башенный цех на Березниковском комбинате был построен за 11 месяцев. Большим успехом сернокислотчиков был ввод двух башенных систем на Невском химическом заводе в Ленинграде, целиком построенных по советским проектам на отечественном оборудовании. [c.9]

    Отечественные сернокислотные системы ДК производительностью 360 тыс. т/год (см. рис. 45) по техническому уровню соответствуют лучшим зарубежным системам на колчедане. В них комплексно использован весь отечественный опыт совершенствования и интенсификации сернокислотного производства. Печные отделения оснащены мощными печами для обжига колчедана в кипящем слое — КС-450, производительностью 450— 500 т/сут колчедана с утилизацией тепла его горения — получением пара энергетических параметров (450 °С 4,0 МПа), используемого для производства электроэисрг ии и для технологических нужд теплофикации. Очистка обжигового газа от пыли производится в 3-х польных электрофильтрах УГТ-3-30. Промывные отделения работают в испарительном режиме. Кислоты в циклах орошения сушильных башен и абсорберов охлаждаются в аппаратах воздушного охлаждения. Используются погружные насосы. Степень окисления SO2 в контактных аппаратах составляет 99,6—99,8%. [c.248]

    Подавляющее большинство методик, предложенных для моделирования массообменных процессов в двухфазных газопарожидкостных системах, используют либо понятие теоретической ступени разделения (т. е. такого контактного устройства, в котором достигается межфазное равновесие), либо понятие ступени разделения с заданной (нормализованной) эффективностью разделения. Объясняется, это, с одной стороны, значительной сложностью моделей, использующих кинетические характеристики процессов массо- и теплообмена, а с другой стороны, недостаточной изученностью кинетики процессов тепло- и массопереноса в контактных устройствах различного типа. Разумеется, моделирование без учета кинетики процесса также дает полезную информацию об объекте. На его основе можно сравнить различные схемы процесса и выбрать оптимальный вариант, определить основные параметры потоков на выходе моделируемого объекта. Однако сопоставить различные конструкции массообменных устройств, наметить пути интенсификации процесса, верно определить размеры аппарата и энергозатраты на проведение процесса можно только с учетом кинетических характеристик контактных устройств и связей эти характеристик с гидродинамическими и физико-химическими параметрами процесса. [c.154]


Смотреть страницы где упоминается термин Интенсификация контактных систем: [c.190]    [c.159]    [c.193]   
Производство серной кислоты Издание 3 (1967) -- [ c.137 , c.290 ]

Технология серной кислоты (1971) -- [ c.146 ]




ПОИСК







© 2025 chem21.info Реклама на сайте