Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сканирование масс-спектра автоматическое

    Обработка первичных данных, получаемых при детектировании ионных пучков в масс-спектрометре, включает аналого-цифровое преобразование сигналов от масс-спектрометра, обнаружение пиков ионов и выделение их из шума, определение соответствующих интенсивностей и массовых чисел. Общей задачей вторичной автоматической обработки является анализ информации, полученной при многократном сканировании масс-спектров. Результаты обработки, предназначенные для восприятия исследователем, могут быть представлены в виде перфокарт, магнитных лент и других носителей, пригодных для их дальнейшего использования. В тех случаях, когда в ходе оперативного просмотра данных требуется изменить ход эксперимента, целесообразно применять цифропечатающее устройство, световые табло и электронную систему отображения информации. [c.24]


    До сих пор рассматривалось только считывание результатов с фотопластин. Однако за последнее время в масс-спектрометрии с искровым источником существенно расширялось применение электрической регистрации, что позволило улучшить аналитические характеристики этого метода анализа следов элементов. Система электрической регистрации ионных токов принципиально отличается от фотографической. Она, как было отмечено в других главах, может работать в двух режимах сканирования масс-спектра и переключения пиков. Сканирование означает перемещение масс-спектра с некоторой скоростью относительно щели коллектора. Таким образом, данные имеют вид непрерывно изменяющегося (аналогового) электрического сигнала, который обычно регистрируется на картах скоростного самопишущего потенциометра, на магнитной ленте или обоими этими способами. Если используется только самописец, данные можно считывать визуально, затем идентифицировать и табулировать. Когда аналоговый сигнал записан в какой-либо форме, можно использовать процесс накопления и сжатия, сходный с режимом работы автоматического микрофотометра. В этом случае при [c.223]

    В хромато-масс-спектрометрах, снабженных ЭВМ, метод масс-фрагментографии может реализоваться не с помощью устройств МИД, а путем построения хроматограмм по заданным ионам. Эти ионы автоматически выбираются ЭВМ из полных масс-спектров, зарегистрированных и внесенных в ее память в результате многократного сканирования спектров в процессе элюирования из колонки всех компонентов смеси. Для примера на рис. 8.4 приведены хроматограммы сложной смеси алканов и алифатических спиртов, зарегистрированные по полному ионному току (а) и по иону с m/z 31 (б), характерному для спиртов. Видно, что время появления максимумов (т.е. время удерживания) компонентов на обеих хроматограммах совпадает. Однако вторая хроматограмма принципиально отличается от первой, поскольку на ней проявляются зоны только тех спиртов, масс-спектры которых характеризуются пиком с m/z 31. [c.195]

    Разумеется, метод автоматической обработки масс-спектров высокого разрешения не лишен недостатков, которые, если не считать аппаратурной сложности, являются издержками быстроты анализа. В частности, при случайных флуктуациях магнитного поля или под воздействием интенсивной внешней помехи на отдельных участках масс-спектра погрешность определения массы может возрасти настолько, что потребуется повторное сканирование. Возрастает влияние статистических флуктуаций ионного тока, повышаются требования к стабильности каналов питания масс-анализатора и к стабильности потока реперного вещества. Сложность автоматической обработки масс-спектров увеличивается при наличии в масс-спектре неразрешенных дублетов, особенно если одним из партнеров дублета является реперный пик. При неточном выборе порога регистрации и алгоритма обнаружения пика может наблюдаться расщепление пиков и появление ложных пиков на хвостах интенсивных линий. Измерение точных значений масс ионов позволяет уста- [c.30]


    НЫЙ С ПОМОЩЬЮ автоматического сканирования (изменением напряжения на электростатическом анализаторе) участок масс-спектра, соответствующий редкоземельным элементам. Образец — окись лантана, смешанная с графитом и содержащая другие редкоземельные элементы. Сканирование проводилось [c.157]

    Электронная вычислительная машина PDP-8, разработанная в 1965 г., представляет собой мини-ЭВМ, открывающую реальный путь к автоматизации отдельных аналитических измерений. В настоящее время в мире распространено более 10 000 этих машин и их модификаций, и они включены в состав многих приборов, которые выпускаются различными фирмами. Некоторые ЭВМ использованы для автоматизации считывания данных с фотопластины при помощи микрофотометра. Бейли и сотр. (1969 а, б) описали систему, объединяющую микрофотометр Grant omparator и ЭВМ PDP-8. После того как оператор помещает пластину на столик микрофотометра, система автоматически производит полное сканирование масс-спектра и считывание каждой спектральной линии. Аналогичное устройство предложено Фришем (1969). Однако обе системы трудноуправляемы и обладают невысоким быстродействием. Системе Фриша, работающей с ЭВМ IBM-1800, необходимо около 14 ч для полной обработки одной фотопластины система Бейли расходует около 5 ч для считывания данных с фотопластины, на которой отсняты 20 экспозиций. Другие устройства для накопления данных в искровой масс-спектрометрии описаны в недавних работах Лауера [c.238]

    Стеклянные емкости с отобранными пробами воды извлекают из холодильника и вьщерживают 2-3 часа при комнатной температуре. Затем с ними проводят все операции, описанные в п.7.4. Одновременно с нагреванием стеклянного и-образного капилляра и переносом компонентов пробы в хроматографичес колонку включают компьютерщто программу автоматического сканирования магнитного поля масс-спектра и сбора масс-спектрометрической информации. По окончании хроматографического анализа из массива масс-спектров формируют хроматограмму полного ионного тока, по которой проводят идентификацию обнаруженных соединений. Идентификахдая состоит в сравнении записанных масс-спектров со стандартными (см. табл. 1). [c.38]

    Сигналы, регистрируемые коллектором монитора, в большинстве случаев достаточно велики для того, чтобы использовать электронные усилительные схемы. Однако для аналитического коллектора обычно необходимы электронные умножители с изменяюшимся коэффициентом усиления, максимальное значение которого достигает 10 . В масс-спектрометрии с искровым источником ионов применяются обычные электронные умножители, отличающиеся лишь наличием дополнительных экранов, исключающих рассеянные ионы (Халл, 1969). Первые эксперименты, проведенные в лаборатории авторов, выявили временную потерю стабильности умножителя типа Аллена, после того как на его первый динод попадали интенсивные ионные токи (среднее значение 10 —10 °А), соответствующие изотопам основы. Впоследствии эксперименты, проведенные с другими типами умножителей, подтвердили, что стабильность коэффициента усиления за большой промежуток времени значительно улучшается, если ограничить максимальный ионный ток, достигающий умножителя. Поэтому была введена практика регистрации масс-спектра, при которой на умножитель попадают только ионные токи, не превышающие ХЮ А. Сканирование производится автоматически вплоть до линий основы, затем ионный пучок частично отклоняется в источнике ионов, и пики основы прописываются вручную. Таким образом, гарантируется постоянство коэффициента усиления умножителя. Подобный прием не упоминался в сообщениях других лабораторий. В литературе нет также указаний на возможное ухудшение характеристик первого динода после длительного воздействия на него ионов различных металлов. [c.145]

    Тем не менее необходимо более детально исследовать процедуры, необходимые для автоматического получения данных с фотопластины и их сжатия. Принцип действия подобного устройства может быть следующим. Микрофотометр производит сканирование каждой линии с интервалом 1 мкм. Значения почернения фотографической эмульсии, которые оказались выше предварительно заданного уровня фона, фиксируются в цифровой форме на магнитной ленте вместе с информацией о расположении точек, где производилось измерение. Таким образом, для каждой отдельной линии масс-спектра (она может быть и мультиплетом) записывается последовательность данных, которая может содержать до нескольких сот чисел, если измеряется интенсивная линия. Затем каждое значение почернения линии переводится в интенсивность ионного тока с помощью известной зависимости между этими величинами и рассчитывается интегральная интенсивность. Помимо этого, для каждой линии определяется положение вершины пика. Эти величины, характеризующие расположение линий на фотонластине, преобразуются затем в соответствующие значения mie. Для этого идентифицируют заранее несколько наиболее интенсивных линий (обычно линии основы) и определяют значения т/е для других линий, используя известную обратную квадратичную зависимость расстояния между линиями от массы ионов. Расчет производят методом последовательных приближений, т. е. повторяют несколько раз, пока большая часть линий не будет приведена в соответствие с номинальными массами, а все известные составляющие масс-спектра (такие, как линии многозарядных ионов) окажутся на своих местах. Следует отметить, что программы, включающие эту последнюю ступень, нетривиальны. Они могут прекрасно работать с большим числом фотопластин, а затем полностью отказать на пластине, несколько отличающейся от предыдущих, или при анализе нового вещества. Подобные случаи обычно приводят к тому, что в программу вносятся изменения, которые должны позволить работать должным образом в новой ситуации. Вследствие этого программы с течением времени становятся все более многосторонними и сложными. Оператор должен уметь работать с ними и по мере необходимости вносить соответствующие изменения. [c.221]


    Поскольку карта представляет наглядный срез потенциальной поверхности, выполненный с разрешением, задаваемым интервалами между точками, ее можно использовать для разных целей. Можно, например, быстро найти конформации с наименьшей и наибольшей энергией, а также определить форму минимумов. Значения энергий, наносимых на контур, могут быть использованы для вычисления ряда величин методами статистической механики средних значений конфигурационной энтропии, спектров кругового дихроизма и т. д. Нанесение контуров на карту связано, конечно, с интерполяцией значений энергии между точками, что существенно нри усреднении физических свойств в условиях ограничешюго числа точек оценивания. Такое усреднение должно учитывать и вышеупомянутый якобиан, но подобный учет выполняют достаточно редко. Если же главная цель — расчет, а не просто просмотр результатов, то совсем неважно, взят ли одно- или двумерный массив данных. Этот массив можно использовать для автоматического поиска минимума энергии, что в данной ситуации означает минимизацию с помощью исчерпывающего периодического сканирования (т. е. просмотра всей энергетической поверхности). Если массив дагшых соответствует потенциальной поверхности мономерного звена статистического клубка полимера, то используя приближение статнстичсской теории полимеров, можно рассчитать гидродинамические и светорассеивающие свойства исследуемой молекулы. [c.582]


Смотреть страницы где упоминается термин Сканирование масс-спектра автоматическое: [c.15]    [c.160]    [c.319]    [c.606]    [c.83]    [c.377]    [c.316]   
Массопектрометрический метод определения следов (1975) -- [ c.157 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектр

Сканирование масс-спектра



© 2024 chem21.info Реклама на сайте