Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубины хрома

    Встречается чистый А Оз — минерал корунд. Драгоценные камни — рубин и сапфир — это кристаллы корунда, окрашенные примесью оксида хрома (рубин) и оксидов титана и железа (сап-фнр). [c.336]

    Очень часто коллоидные системы окрашены. Окраска драгоценных или полудрагоценных камней обусловлена присутствием в них ничтожных количеств тяжелых металлов и их окислов в состоянии коллоидной степени раздробления. Например, в естественных рубинах такими примесями являются соединения железа, в изумрудах — соединения хрома. Так называемое рубиновое стекло, изготовлявшееся еще М. В. Ломоносовым, представляет собою стекло с весьма малой примесью коллоидного золота (0,0001 %) Очень часто встречаются и окрашенные коллоидные системы с жидкой дисперсионной средой. Особенно яркой краской обладают золи металлов. Это объясняется большой разностью плотностей, а следовательно, и показателей преломления дисперсной фазы и дисперсионной среды. [c.43]


    Синтез рубина и сапфира. Оба этих минерала, являющихся драгоценными камнями первого класса, представляют собой разновидности корунда А Оз, окрашенные различными примесями. Красный цвет рубина обусловлен замещением части ионов алюминия ионами хрома (П1). Синяя окраска сапфира возникает главным образом из-за нахождения в массе корунда ионов железа (П1). [c.77]

    В природе а-глинозем имеет ограниченное распространение в виде минерала корунда. Этой же формой глинозема являются драгоценные камни — рубин и сапфир, окраска которых вызвана примесями хрома, титана и железа. Под названием электрокорунда в широких масштабах его получают в промышленности при нагревании гидраргиллита АЬОз-ЗНзО или искусственно получаемого гидрата глинозема (байерита), отвечающего той же формуле. В качестве промежуточного продукта при нагревании гидраргиллита и байерита образуется бемит, имеющий формулу АЬОз-НгО, которая присуща и диаспору. [c.141]

    Оксид и гидроксид. Оксид алюминия А О3 (глинозем) представляет собой белую кристаллическую массу. Встречается в природе в виде минерала корунда, по твердости занимающего третье место после алмаза и карбида бора. Драгоценные камни — рубин и сапфир — представляют собой оксид алюминия, окрашенный примесями оксидов хрома и титана. [c.177]

    Важное применение имеют и некоторые соединения алюминия, в частности искусственный рубин, получаемый сплавлением окиси алюминия с небольшими добавками соединений хрома. Его используют для изготовления подшипников ( камней ) в часовых и других механизмах, а также фильер в волочильных станах. [c.183]

    Оксид алюминия (старое название — глинозем) А ,.Оз — вещество белого цвета, весьма тугоплавкое, с очень высокой твердостью. Исходный продукт для получения алюминия. В природе встречается в виде корунда и его разновидностей. Если бесцветные кристаллы корунда окрашены примесями в синий цвет, то они называются сапфирами, в фиолетовый — аметистами, в красный — рубинами. Кристаллы рубинов с примесями оксида хрома (П1) используются в качестве лазеров. [c.184]

    В природе встречаются прозрачные кристаллы окиси алюминия, в которых часть ионов алюминия замещена ионами трехвалентного хрома, придающими кристаллу красную окраску. Такие кристаллы называются рубинами. Они ценятся как дра- [c.149]

    Окись алюминия (глинозем) АЬОз в природе встречается в виде минерала корунда. Неочищенный корунд (наждак) применяют в качестве абразива. Чистый корунд бесцветен. Драгоценные камни рубин (красного цвета) и сапфир ( синий или иного цвета)—прозрачные кристаллы корунда, содержащие небольшие количества различных окислов металлов (окисей хрома и титана). Можно получать искусственные рубины и сапфиры сплавлением окиси алюминия (т. пл. 2050 °С) с небольшими количествами других окислов охлаждать расплав следует при таком режиме, который позволял бы получать крупные кристаллы. Полученные таким образом камни по свойствам нельзя отличить от природных характерным их признаком служат лишь периферические микроскопические вкрапления пузырьков воздуха. Такие камни служат украшениями, а в промышленности их используют для изготовления подшипников ( камней ) в часовых и иных механизмах, фильер волочильных станов. [c.527]


    Хром, один из распространенных элементов в природе, благодаря своим физическим свойствам (высокой температуре плавления, инертности к воздействию агрессивных сред, высокому сродству к кислороду) еще с начала XIX столетия находит широкое практическое применение. Это привело к быстрому развитию аналитической химии хрома. В последнее десятилетие появились новые объекты исследования — лунные породы, глубинные породы Земли, породы дна Океана, объекты внешней среды, тонкие пленки, лазерные рубины и др. Для их анализа потребовалась разработка новых, более точных и высокочувствительных методов и усовершенствование классических методов аналитической химии. [c.5]

    Сг) [319], ядерно-чистого тория [834], стекол [307], искусственных рубинов в сапфиров [403], воздуха (предел обнаружения 5-10- мкг Ст м ) [958], воды [266,463,465,489,619,672,801], горных пород и минералов [716], почв, [124], метеоритов [135]. Описан микрохимический вариант метода определения хрома в анодных порошках [101]. [c.45]

    Кристаллический оксид - корунд - имеет ионную кристаллическую решетку, в которой ионы О образуют плотную гексагональную упаковку, а ионы находятся в ее октаэдрических пустотах (см. разд. 6.2). Встречающиеся в природе прозрачные кристаллы корунда, окрашенные примесью хрома в красный цвет (рубины) или примесью титана и железа - в синий (сапфиры), высоко ценятся как драгоценные камни. Синтетические рубины и сапфиры производятся в промышленных масштабах. [c.323]

    После публикации 1904 г. Вернейль направляет свои усилия на получение сапфира. Тогда не было известно, какой элемент обусловливает синий цвет этого камня, однако ему пригодились сведения о том, что природным камням этот цвет придает совместное присутствие окислов железа и титана [9]. В это время Вернейль работал консультантом фирмы Л. Хеллер и сын в Нью-Йорке и Париже. В его сапфирах содержались добавки 1,5% окиси железа и 0,5% окиси титана вместо окиси хрома, используемой в рубинах. Синяя окраска кристаллов обусловлена довольно сложным механизмом. Обычно цвет драгоценных камней связан с поглощением света характерной длины волны определенным элементом, особенно так называемыми переходными элементами, такими, как железо, кобальт, никель и хром. Если из спектра белого света удалить определенную полосу цветов, то свет, попадающий в глаз, будет окрашен в так называемый дополнительный цвет. Например, рубины потому красного цвета, что хром в кристаллической решетке корунда поглощает зеленый свет. Чтобы сапфир приобрел синий цвет, необходимо поглощение желто-оранжевого света. Такое поглощение имеет место, когда происходит электронный скачок внутри кристалла от атомов железа к атомам титана. Поэтому для окраски кристалла в синий цвет требуется совместное Присутствие железа и титана. [c.34]

    Алюминий давно уже перестал быть драгоценным металлом, но некоторые его соединения но-прежнему остаются драгоценными камнями. Монокристаллы окиси алюминия с небольшими добавками красящих окислов — это и ярко-красный рубин и сияющий синий сапфир — драгоценные камни первого — высшего порядка. Цвет им придают сапфиру — ионы железа и титана, рубину — хрома. Чистая кристаллическая окись алюминия бесцветна, ее называют корундом. Алюминий входит также в состав турмалина, бесцветного лейкосапфира, желтого восточного топаза и многих других ценных калмней, В заводских масштабах производятся искусственные корунд, сапфир и рубин, эти камни нужны не только ювелирам, но и многим отраслям современной техники. Достаточно вспомнить о рубиновых лазерах, о часах на пятнадцати камнях , о наждаке, который делается преимущественно из корунда, получаемого в электропечах, о сапфировых окнах Тока-мака — одной из первых установок для изучения термоядерных процессов. [c.218]

    Из природных систем типа Т/Т наиболее широко известны такие минералы, как топаз (8102 +А120п), рубин (А12О3, окрашенный оксидом хрома), сапфир (А12О3 + СоО), а также голубая каменная соль, окраска которой обусловлена присутствием ничтожно малого количества (1 10 %) коллоидно диспергированного металлического натрия. [c.448]

    Синтетические корунды —гранатиты — получают из оксида алюминия высокой степени чистоты процесс осуществляют в пламени гремучего газа при 2000 °С. Гранатиты — химически очень стойкие вещества, не уступают природному корунду и выдерживают воздействие кислот и растворов щелочей. Они имеют почти предельную твердость (по шкале Мооса — 9), высокий показатель преломления, плотность приближается к 4. В ювелирные магазины поступают сверкающие гранатиты разнообразной окраски — цвета рубина (окрашены оксидом хрома), сапфира (с содержанием оксидов титана и железа) для получения других оттенков используется ряд оксидов, включая оксид ванадия. [c.278]

    Так, например, выращивание рубина в водных растворах К2СО3 [исходная шихта — порошок А Оз или А1(0Н)з] проводилось при температуре 490 °С и давлении 90 МПа (температурный перепад 30 °С). В раствор добавлялся дихромат калия с концентрацией 0,1 г/ /1000 м что окрашивало выращиваемые кристаллы в ярко-красный цвет содержание хрома в кристаллах было порядка 1 %. [c.78]


    Окись алюминия AI2O3 (глинозем). Встречается в природе в виде минерала корунда. Корунд по твердости близок к алмазу . Драгоценные камни рубин и с а п ф и р также представляют собой окись алюминия, окрашенную небольшим количеством примесей (хрома, железа и нр.). Рубин искусственно готовят сплавлением пудры из окиси алюминия с примесью окиси хрома. [c.424]

    Например, при осаждении сульфата бария из концентрированного раствора перманганата калия часть узлов кристаллической решетки BaSO< занимают частицы КМп04, которые равномерно распределены по всему объему кристалла. В результате замены в кристаллической решетке корунда АЬОз атомов алюминия близкими к ним по величине атомами хрома получаются красные кристаллы — рубины. При кристаллизации из смешанного расплава серебра и золота образуется сплав этих металлов, состоящий из смешанных кристаллов, состав которых в зависимости от состава расплава можно плавно изменять от 100% Ag до 100% Аи. [c.97]

    Известно девять модификаций AljOg, наиболее устойчивой, тугоплавкой и твердой из которых является a-AljOg, встречающаяся в природе в виде минерала корунда. Прозрачные кристаллы корунда могут быть окрашены примесями в различные цвета, тогда они ценятся как драгоценные к шс красный рубин (примесь хрома) и синий сапфир (примеси титана и железа). Искусственно получаемый (путем прокаливания бокситов) корунд называют а л у н д о м и используют в качестве абразивного и огнеупорного материала. [c.412]

    Важнейший из оксидов элементов IIIA группы AI2O3 (глинозем), встречается в природе в виде минерала корунда (по твердости близок к алмазу). Драгоценные камни рубин и сапфир также представляют собой оксид алюминия, окрашенный примесями хрома, железа и др. [c.474]

    В 1960 г. Мейман (США) создал оптический квантовый генератор на искусственном рубине. Активным веществом в нем была окись алюминия, в которой 0,05% атомов алюминия замещалось атомами хрома. На основе возбуждения индуцированного возвращения в основное состояние атомов хрома удалось получить мощное излучение в красной области видимого диапазона Ск = 6929 А, 6943 А). [c.111]

    У серебра и золота атомные радиусы одинаковы, у кремния и германия близки друг к другу. Близки они у алюминия и хрома в соединениях, в которых А1 и Сг трехвалентны. Поэтому кристаллы Ag и Аи, Si и Ge, AI2O3 и Сг Оз попарно являются изоморфными. Возможность замещения атомов Ag и Аи, а также Si и Ge дает возможность совместной кристаллизации таких вешеств из расплавов с образованием однородных твердых растворов (см. 7). На основе изоморфизма Ai-jOg и Сг Оз в настоящее время разработана технология получения искусственных рубинов для часовой промышленности, для квантовых усилителей и генераторов (см. гл. П1 и XI). [c.116]

    Порошок карбида вольфрама W , по твердости близкого к алмазу, служит для получения металлокерамических пластинок с кобальтом в качестве связующего. Такие пластинки (марка WK-6) употребляют для изготовления режущего инструмента (резцов, сверл, фрез), способных обрабатывать самые твердые материалы. Карбид хрома СгдСг в сплаве с никелем тоже обладает высокими режущими свойствами. Поверхность стали, содержащей хром, сильно упрочняется за счет образования на ней карбидов или нитридов. Оксид хрома (И1) служит для полирования и шлифования различных изделий, употребляется в производстве искусственных рубинов (гл. XI, 3). Хроматы и бихроматы используются в качестве окислителей. Смесь бихромата калия с серной кислотой (хромовая смесь) применяется для очистки химической посуды от загрязнений. [c.340]

    Наибольшее распространение имеют дисперсные системы с твердой дисперсионной средой и твердой дисперсной фазой (твердые золи). К ним относятся многие природные и искусственные самоцветы, цветные стекла, эмали, сплавы некоторых металлов. Так, один из самых красивых красных самоцветов — рубин — представляет собой кристаллический оксид аллюминия, в котором распределены коллоидные частицы оксидов хрома и железа. Синий самоцвет сапфир — также твердый коллоидный раствор оксидов титана и железа в кристаллическом оксиде алюминия. В настоящее время получают синтетические рубины и сапфиры из чистого оксида алюминия, в который добавлены соответствующие оксиды металлов. [c.239]

    Рубиновый лазер. Источником когерентного излучения (рабочим телом) здесь является кристалл розового рубина (окись алюминия А1аОз — корунд), содержащего в качестве примеси замещения трехвалентные парамагнитные ионы хрома Сг + (0,050%). У трехвалентного иона хрома, энергетическая схема которого [c.522]

    Активными материалами могут быть твердые диэлектрика, газы, полупроводники и жидкости практически промышленные оптические квантовые генераторы выполняются на твердых телах или как газовые. В качестве твердых тел используют рубин (плавленая окись aлю иния с добавкой 0,05 % трехвалентного хрома) и стек/.о с примесями неодима (до 5%), а в последнее врем — алюмоиттриевый гранат с неодимом. При воздействии на рубин световых лучей атомы хрома возбуж-дзчютоя и через несколько миллисекунд излучают фото- [c.380]

    Монокристаллические материалы составляют основу современной полупроводниковой и вычислительной техники, оптических квантовых генераторов, методов голографии. Искусственные монокристаллы получают различными способами из расплавов, рас-,1 . парообразной или твердой фазы. В первом твердотельном х /ооре, построенном в 1960 г., в качестве рабочего элемента использован монокристалл рубина. Рубин — это кристалл корунда (а-АЬОз), содержащий примеси ионов хрома, Сг+ . Присутствие ионов хрома придает кристаллам корунда красную окраску. В оптических квантовых генераторах (ОКГ) чаще всего применяют бледно-розовый рубин с содержанием хрома около 0,05%. При повышении количества хрома окраска становится уже ярко-красной, а в дальнейшем переходит в зеленую. Кристаллы рубина по своим физико-химическим свойствам в определенной степени уникальны и отвечают всем требованиям, предъявляемым к материалам для ОКГ. Они обладают высокой теплопроводностью, что позволяет избежать их саморазогрева во время работы, имеют высокую оптическую и механическую однородность, исключающую паразитное поглощение и рассеяние энергии, обладают высокой термической, механической и химической стойкостью. Монокристалл рубина для ОКГ должен быть длиной от 50 до 300 мм и диаметром 5—25 мм. Кристаллы такого размера получают синтетическим путем. Одним из наиболее распространенных методов синтеза монокристаллов рубина остается способ, предложенный в 1891 г. Вернейлем. Ультрадисперсный порошкообразный оксид алюминия, легированный оксидом хрома (1П), попадает в пламя кислородно-водородной горелки, где температура достигает 2000 °С, плавится и опускаете) на расплавленную верхнюю часть [c.158]

    Полярографические методы используют при определении хрома в алюминиевых сплавах [221], двуокиси титана [1063], арсе-ниде галлия [161], сульфате кадмия [375], вольфрамате натрия [214], триглицинсульфате [866], HNO3 особой чистоты [16], радиоактивных препаратах хрома [165], катализаторах [393], гальванических отходах [1014], нихромовых пленках [134], каучуке [898], кристаллах рубина [1049, п,ементе [170], стекле [770], сталях и сплавах [93, 428, 610, 852, 897], алите [496], рудах и продуктах их переработки [975], речных, морских и сточных водах [87, 682], воздухе [69, 195], почвах [87]. [c.59]

    Основные и амфотерные оксиды — это соединения металлов и амфотер-ных элементов с кислородом. Взаимодействуя с кислотными оксидами или кислотами, такие оксиды образуют соли. Некоторые из основных оксидов могут реагировать с водой, превращаясь в сильные основания — щелочи. Первым основным оксидом, с которым имел дело человек, был оксид кальция СаО — негашеная известь, которая образуется при обжиге известняка (карбоната кальция СаСОд). Почти одновременно (а может быть, и раньше) люди узнали другой оксид, амфотерный. Это был драгоценный камень рубин, оксид алюминия AlgOg, прозрачные кристаллы которого имеют кроваво-красный цвет из-за примеси оксида хрома СгдОд. Рубины с незапамятных времен украшали короны властителей — царей, королей, султанов... [c.70]

    Успешный синтез Годена был воспроизведен рядом других французских и немецких химиков, экспериментировавших с различными солями в качестве компонентов для получения рубина. Работы того времени заложили основы метода получения кристаллов, который теперь известен как выращивание с флюсом или, по терминологии специалистов, кристаллизация из раствора в расплаве. Этот метод основан на растворении материалов с высокой точкой плавления в растворителе, или флюсе , имеющем значительно более низкую точку плавления. Кристаллы тугоплавкого компонента получают путем охлаждения раствора-расплава или испарением растворителя аналогично тому, как кристаллы сульфата меди образуются нз водного раствора. Получение кристаллов рубина стало возможным только благодаря тому, что было уже известно, что рубин состоит нз окиси алюминия и примеси окиси хрома, придающей ему красный цвет. [c.23]


Смотреть страницы где упоминается термин Рубины хрома: [c.254]    [c.260]    [c.96]    [c.308]    [c.167]    [c.142]    [c.150]    [c.300]    [c.143]    [c.55]    [c.82]    [c.29]    [c.30]   
Люминесцентный анализ неорганических веществ (1966) -- [ c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Рубин

РубиноваИ



© 2024 chem21.info Реклама на сайте