Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глутаминовая пути образования

    Наиболее распространенным пептидом этого типа несомненно является глутатион (20). Он, по-видимому, присутствует во всех живых организмах и найден преимущественно в межклеточном пространстве, обычно в относительно высокой концентрации. Поскольку он выделен и охарактеризован почти 60 лет назад, изучены многие его биологичёские функции, и он включают сохранение тиольных групп в протеинах и других соединениях, разрушение пероксидов и свободных радикалов, выполнение роли кофермента для некоторых ферментов, а также детоксификация чужеродных соединений по пути образования меркаптуровой кислоты. Многие эти исследования, включая полученные таким путем химические данные, рассмотрены в обзорах [48, 49]. Наиболее крупное достижение, которое привлекло пристальное внимание, касалось роли у-глутаминового цикла 50] схема (4) . Этот важный биохимический процесс, в котором глутатион обеспечивает перенос аминокислот сквозь клеточные мембраны, описан достаточно хорошо. Следует отметить, что этот цикл описывает ферментативный синтез глутатиона с промежуточным образованием ферментно-связанного ацилфосфата. [c.298]


    Известно, что синтез аминокислот в клетке ведется очень экономно и целенаправленно, под контролем специальных регулирующих систем. Регуляторный контроль обычна осуществляется по принципу обратной связи на уровне начального фермента или ферментов данного специфического пути образования метаболита. В случае значительного повьш1ения уровня конечного продукта (в данном случае лизина) включается механизм регуляции и один из ферментов в цепи последовательных превращений блокируется, синтез прекращается. Цель этого регулирования предотвратить избыточное образование и накопление данного метаболита, потребность в котором организма в настоящий момент полностью удовлетворяется. Но такая безупречная логика синтеза существует лишь у микроорганизмов, не имеющих нарушений и дефектов в этом. механизме. В природных условиях такие нарушения достаточно редки, но они все же встречаются. Например, найдено немало природных микроорганизмов, обладающих способностью к сверхсинтезу глутаминовой кислоты, аланина, валина. В то же время таких продуцентов по лизину, гомосерину, треонину и некоторым другим аминокислотам в природных условиях найдено не было. Для получения промышленных продуцентов пришлось пойти по пути получения мутантов, имеющих генетический дефект [c.26]

    Пути биосинтеза аспарагиновой кислоты очень сходны с путями образования глутаминовой кислоты. Так, аспарагиновая кислота может возникать из щавелевоуксусной кислоты в результате трансаминирования  [c.435]

    В синтезе глутатиона, проведенном Боде и Борека [122], а-карбоксильную группу глутаминовой кислоты защищали путем образования оксазолидонового цикла. Тозил-5-оксазолидон-глутаминовую кислоту вводили в реакцию с H- ys (Bzl)-Gly-ОМе с помощью карбодиимидного метода продукт реакции обрабатывали щелочью, в результате чего происходило омыление метилового эфира с одновременным расщеплением оксазолидонового цикла. Удаление N- и S-защитных групп осуществляли затем действием натрия в жидком аммиаке. [c.339]

    Вместе с тем следует отметить, что коферменты благодаря наличию в них гетероатомов и систем я-связей являются великолепными метчиками активного центра фермента. Как указывалось выше, для коферментсодержащих белков катализируемая реакция протекает путем образования комплексов с коферментом. Следовательно, изучая подходящим методом изменения в физических параметрах присоединенного к белку кофермента, происходящие под влиянием субстрата, можно получить ценную информацию о механизме самого процесса. Этот подход успешно используется при анализе механизма действия пиридоксаль-фосфатсодержащих ферментов (трайсаминазы, декарбоксилазы глутаминовой кислоты, фосфорилазы и др.), НАД-и ФАД-зависимых ферментов (лактатдегидрогеназы, окси-дазы -аминокислот и др.). [c.11]


    Аммиак—очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина — безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ (см. главу 12). Непосредственный источник глутаминовой кислоты в мозговой ткани—путь восстановительного аминирования а-кетоглутаровой кислоты  [c.635]

    Образование глутаминовой кислоты из а-кетоглутаровой и аммиака является важным механизмом нейтрализации аммиака в ткани мозга, где путь устранения аммиака за счет синтеза мочевины не играет существенной роли. [c.635]

    Больщинство прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков. В качестве исходных углеродных скелетов для биосинтеза аминокислот служит небольшое число промежуточных соединений различных метаболических путей (табл. 10). Введение в молекулу некоторых из них (щавелевоуксусной, а-кетоглутаровой, пировинофадной кислот) аминного азота приводит к образованию аспарагиновой, глутаминовой кислот и аланина. Однако в больщинстве случаев исходные соединения должны подвергнуться значительным перестройкам, чтобы сформировать углеродный остов молекулы будущей аминокислоты. [c.88]

    При дезаминировании некоторых аминокислот (аланина, аспарагиновой, глутаминовой кислот) образуются а-кетокислоты (пировиноградная, а-кетоглутаровая, щавелевоуксусная), принадлежащие к числу промежуточных продуктов клеточного катаболизма. Больщинство же возникающих при этом органических кислот подвергается сначала предварительным превращениям, приводящим к появлению соединений, способных прямо включаться в основные катаболические пути клетки. Например, распад -лейцина в конечном итоге приводит к образованию ацетил-КоА — исходного субстрата ЦТК. Такова энергетическая сторона метаболизма бактерий-аммонификаторов. [c.402]

    Окисление надмуравьиной кислотой приводит к разрыву этих мостиков с образованием групп SOgH. При этом получаются две фракции А и Б, каждая из которых подвергалась систематическому расщеплению с образованием пептидов. Последние были разделены при помощи метода бумажной хроматографии и другими методами после установления их строения оказалось возможным определить последовательность аминокислот в канедой из двух цепей. Цепь А содержит 21, а цепь Б — 30 аминокислот. Гидролиз природного инсулина химотрипсином, экстрактом поджелудочной железы и кислотами, т.е. в условиях, в которых не разрушаются связи S—S, привел в дальнейшем к получению пептидов, в которых эти мостики сохраняются. Эти пептиды разделяли ионо-форезом на бумаге и определяли их строение. При этом пришли к заключению, что из шести цистеиновых остатков инсулина четыре находятся в цепи А и два — в цепи Б. Последние обеспечивают связь с цепью А при помощи двух цистеиновых остатков цепи А, тогда как два остальных цистеиновых остатка цепи А образуют меньший цикл. Кроме того, было установлено, что из шести амидных групп молекулы три принадлежат аспарагиновым, а три — глутаминовым остаткам. Таким путем пришли к следующему строению инсулина быка  [c.432]

    Образование 4-амнномасляной кислоты путем декарбоксилирования глутаминовой кислоты совершенно бесспорно доказано для ряда растений. — Прим. ред. [c.396]

    Наличие в тканях млекопитающих общей, активной в физиологических условиях, ферментной системы дезаминирования L-аминокислот до сих пор не доказано в то же время многие экспериментальные факты говорят о существовании активных систем переаминирования. Превращение азота большей части аминокислот в мочевину протекает двумя путями а) путем реакций переаминирования, приводящих к образованию глутаминовой кислоты, с последующим окислительным дезаминированием последней освободившийся при этом процессе аммиак используется для синтеза карбамилфосфата б) путем реакций переаминирования, приводящих к образованию аспарагиновой кислоты. Одна из важных функций глутамат-аспартат-транс-аминазы состоит в образовании аспарагиновой кислоты, используемой для синтеза аргинина. Рассмотренные превращения можно схематически изобразить следующим образом  [c.176]

    При дезаминировании аспарагиновой кислоты, аланина и глутаминовой кислоты образуются а-кетокислоты, принадлежащие к числу промежуточных продуктов обмена углеводов. Введение per os этих аминокислот, а также валина [97, 98], серина [99, 100], глицина [99, 101], треонина [102], аргинина [103, 104],. гистидина [104—106] и изолейцина [104, 107] вызывает у голодающих животных увеличение содержания гликогена в печени. В определенных условиях пролин [104], цистеин [104] и метионин [108] также могут вызывать добавочное образование у леводов, тогда как в результате обмена тирозина (стр. 417), фенилаланина (стр. 425) и лейцина (стр. 359) образуютсл кетоновые тела. Недостаток этих экспериментальных приемов состоит в том, что получаемые результаты касаются обмена аминокислот в нефизиологических условиях не удивительно, что некоторые аминокислоты проявляют при одних условиях гликогене-тическое действие, а при других — кетогенное. Для изучения превращения аминокислот в процессах обмена веществ наиболее удобно вводить изотопную метку в углеродный остов аминокислоты и затем выяснить судьбу меченого углерода путем исследования продуктов обмена. Работы этого рода, относящиеся к отдельным аминокислотам, подробно рассмотрены в гл. IV. [c.181]


    Вслед за открытием -аминомасляной кислоты в ткани мозга в этом органе была обнаружена декарбоксилаза глутаминовой кислоты [214, 215]. Некоторые другие ткани также проявляют слабую глутаматдекарбоксилазную активность, однако в основном образование -[-аминомасляной кислоты происходит в мозге. Значение этой аминокислоты и пути ее превращения в организме окончательно не выяснены. Известно, однако, что -аминомасляная кислота вступает в реакцию переаминирования с а-кетоглутаровой кислотой, причем образуются глутаминовая кислота и полуальдегид янтарной кислоты (стр. 227). Поэтому есть основание думать, что обмен этой аминокислоты может протекать путем ее окисления в цикле лимонной кислоты через янтарную кислоту  [c.202]

    Образование и распространение бактериальных декарбоксилаз лизина, орнитина, тирозина, гистидина, аргинина и глутаминовой кислоты изучены довольно подробно исследована также кинетика реакций, катализируемых декарбоксилазами, и описана частичная очистка некоторых из- них. Эти исследования позволили использовать аминокислотные декарбоксилазы для целей количественного определения аминокислот. Такие определения основаны на измерении количества углекислоты, выделяющейся при действии специфической декарбоксилазы [197], или количества образующегося амина [228]. Поскольку аминокислотные декарбоксилазы обладают строгой стереоспецифичностью, они применяются также для обнаружения примеси следов L-изомеров в препаратах D-аминокислот. Кроме того, эти ферменты применяют и для получения D-аминокислот (например, D-лизина или D-глутаминовой кислоты) путем избирательного разрушения L-изомера в рацемических препаратах аминокислот (стр. 94, 95). [c.206]

    В результате фракционирования экстрактов сульфатом аммония были получены препараты, содержащие только D-транс-аминазу. Образование D-аланина путем переаминирования между пировиноградной кислотой и D-изомерами фенилаланина, триптофана, метионина, гистидина и лейцина было обнаружено в опытах с ферментными препаратами из Ba illus anthra is. В этой ферментной системе пировиноградная кислота не может быть заменена а-кетоглутаровой кислотой. Из D-аминокислот, испытанных в эксперименте, с а-кетоглутаратом реагировал только D-аланин. Из L-аминокислот с пируватом взаимодействовала только L-глутаминовая кислота. [c.228]


Смотреть страницы где упоминается термин Глутаминовая пути образования: [c.345]    [c.157]    [c.251]    [c.374]    [c.157]    [c.251]    [c.87]    [c.206]    [c.96]    [c.108]    [c.79]    [c.202]    [c.540]    [c.43]    [c.206]    [c.301]    [c.379]    [c.701]    [c.717]    [c.255]    [c.464]    [c.229]    [c.89]    [c.245]    [c.146]    [c.409]    [c.256]    [c.334]    [c.235]    [c.238]    [c.241]    [c.242]    [c.254]    [c.256]   
Технология микробных белковых препаратов аминокислот и жиров (1980) -- [ c.408 ]




ПОИСК







© 2025 chem21.info Реклама на сайте