Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природная гидролиз

    Инвертный сахар умеют получать, между прочим, пчелы. Они собирают нектар — выделяемую цветами жйд-кость, содержащую немного сахарозы. Потом они избавляются от большей части воды, а сахарозу гидролизуют до инвертного сахара, который и запасают, чтобы им питаться. Мед — это и есть природный инвертный сахар. В древности и раннем средневековье Европа не знала сахара — первые его образцы привезли с Ближнего Востока крестоносцы. А до тех пор единственным сладким веществом, известным европейцам, был мед. [c.144]


    С другой стороны, при помощи озона много узнали о структуре природного и синтетического каучуков, так как он атакует двойную связь, а образовавшиеся озониды могут гидролизоваться с образованием альдегидов или кетонов в зависимости от групп, присоединенных к атомам углерода, соединенным двойной связью. [c.216]

    К восстановительным способам очистки газа от сернистых соединений относят каталитическое гидрирование и гидролиз. Эти методы используют в тех случаях, когда в газе присутствуют различные сернистые соединения, которые невозможно полностью удалить более простыми и дешевыми способами, например абсорбцией или адсорбцией. В некоторых случаях эти методы наиболее эффективны для очистки как технологических, так и природных газов. [c.71]

    Поскольку все важнейшие природные полимеры получаются путем поликонденсации, то деструкция, представляющая собой обратный процесс, идет путем,гидролиза этих полимеров. [c.372]

    Теория, позволяющая количественно описать изменение среднего молекулярного веса и распределение по молекулярным весам в ходе свободно-радикальной термической и окислительной деструкций, в настоящее время только создается. Поэтому в настоящем параграфе будут рассмотрены лишь кинетические закономерности процессов гидролиза природных полимеров. В основном приходится иметь дело с тремя типами гидролиза — кислотный гидролиз,, щелочной гидролиз и гидролиз под действием ферментов. [c.373]

    Метод гидролиза широко применяется для установления строения различных природных сложных эфиров, например восков. [c.533]

    Гидролиз белковых веществ. В жизненных процессах основную роль играют белковые вещества, поэтому проблема белков является одной из самых важных в органической химии. Белки составляют около 50% всех природных соединений по подсчету в жизненные процессы биосферы нашей планеты вовлечено 5 10 т протеинов (В. И. Вернадский). [c.539]

    Процессы галогенирования различных органических соединений,, особенно углеводородов, имеют большое практическое значение в современной синтетической химии и органической технологии. Введение активных атомов галогена создает повышенную реакционноспособность, что облегчает дальнейшие реакции конденсации, полимеризации, гидролиза и др. Из экономических соображений применяется главным образом хлорирование, но в отдельных случаях прибегают к броми-рованию и иодированию. В последнее время практический интерес приобретают реакции фторирования. Сырьем для галогенирования являются различные природные и технические газы. [c.760]


    Белки подразделяют на дре большие группы простые и сложные. Простые белки гидролизуются кислотами или щелочами. В среднем в их состав входят 50 % С, 7 % Н, 23 % О, 16 % N и 3 % 8. Все природные аминокислоты оптически активны (кроме глицина) и принадлежат, за редким исключением, к Ь-ряду. [c.272]

    Хотя большинство природных аминокислот может быть получено гидролизом белков при помощи горячей соляной нли серной кислоты, синтез аминокислот имеет большое значение, особенно для получения неприродных стереоизомеров и аналогов аминокислот с видоизмененными боковыми цепями. [c.360]

    Строение. В зависимости от числа молекул моносахаридов, образующихся при гидролизе низкомолекулярных полисахаридов (олигосахаридов), последние подразделяются на дисахариды, трисахариды и т. д. Особенно хорошо известны дисахариды (био-зы), которые являются природными веществами. Они обычно выделяются при частичном гидролизе высокомолекулярных полисахаридов. В свою очередь при гидролизе молекула дисахарида образует две одинаковые или различные молекулы моносахаридов  [c.244]

    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]

    Буферные смеси имеют большое значение при химической очистке воды от взвесей методом коагулирования. Чем выше буферная емкость коагулируемой воды, тем успешнее протекает ее очистка гидролизующимся коагулянтом. Буферная емкость природных вод водоемов обусловливает их нейтрализующие свойства. [c.57]

    Хроматографический анализ органических веществ развивался попутно с хроматографией неорганических веществ. В 1935—1936 гг. появились первые сообщения об успешном применении метода Цвета в анализе синтетических красителей. Из жидкофазных вариантов хроматографии наиболее широкое применение в органической и биологической химии получила бумажная хроматография. Это тонкий микрометод, позволяющий разделять смеси нескольких десятков компонентов на полоске пористой бумаги, которая выполняет роль хроматографической колонки. Хроматограмма получается в виде пятен, которые имеют окраску, соответствующую природной окраске разделяемых компонентов смеси. При анализу бесцветных веществ пятна появляются на бумаге после опрыскивания ее подходящим реактивом. Например, при анализе аминокислотного состава белков после их гидролиза бумагу опрыски- [c.10]

    ДЭА-процесс широко используется для очистки природных газов, содержащих OS и Ss, поскольку в отличие от моноэтаноламииа диэтаноламин не образует с ними нерегенери-руемых соединений. Продукты реакции ДЭА с OS и S2 при повышенных температурах гидролизуются на H2S и СО2. Гидролиз осуществляется обычно при регенерации раствора, а иногда зону гидролиза создают уже в абсорбере (см. рис. 53, зона А). Зона гидролиза организуется в верхней части абсорбера из пяти—восьми реальных тарелок, куда подается регенерированный ДЭА-раствор в количестве 10—15% от общего объема с температурой 70—90 °С. Чтобы охлажденный раствор, подаваемый на верхнюю тарелку абсорбера, пе снижал температуру в зоне гидролиза, он обходит ее по обводной линии. [c.174]

    Карбоновые кислоты являются слабыми кислотами, поэтому X соли подвергаются обратимому гидролизу. В зависимости от исла карбочснльных групп в молекуле, карбоновые кислоты под-азделяются на одноосновные, двухосновные и т. д КарбоноЕ1ые кислоты, как и неорганические кислоты, сэ спир-ами образуют сложные эфиры (см. 173), в виде которых час го стречаются в природных продуктах. [c.487]

    Первичные алкилсульфаты, получаемые из первичных спиртов с линейной углеродной цепью. Эти спирты частично являются продуктами гидролиза природных жиров (например, лауриловый С12Н23ОН, миристиловый С14Н29ОН), но большей частью их синтезируют путем гидрирования высших жирных кислот, получаемых окислением парафина, алюминийорганическим синтезом или оксосинтезом. В последних случаях сырьем оказываются смеси первичных спиртов с подходящей длиной алкильной группы. [c.321]

    Успехи органической химии позволяют производить ряд ценных органических продуктов из самого разнообразного сырья. Так, напрнмер, этиловый спирт, используемый в громадных количествах в производстве синтетического каучука, искусственных волокон, илас ическпх масс, взрывчатых веществ, эфиров и т. п., можно получать из пищевых продуктов (зерна, картофеля, сахарной свеклы), гидролизом древесины и гидратацией этилена. Этилен же, в свою очередь, получается при химической переработке природных газов, нефти и других видов топлива. Вначале пищевое сырье в производстве спирта стала вытеснять древесина. Из 1 т древесины при гидролизе получается около 160 кг этилового спирта, что заменяет 1,6 т картофеля или 0,6 т зерна. Производство гидролизного спирта обходится дещевле, чем из пищевого сырья. При комплексной химической переработке древесина используется вместо пищевого сырья также в производстве глицерина, кормового сахара, кормовых дрожжей, уксусной, лимонной и молочной кислот и других продуктов. Особенно быстро развивается производство синтетического спирта гидратацией этилена таким образом, растительное сырье вытесняется минеральным. Себестоимость синтетического спирта из нефтяных газов в три раза ниже, чем из пищевого сырья. Интенсивно развивается также производство синтетического каучука из бутан-бутиленовой фракции попутных нефтяных газов, поэтому этиловый спирт потерял доминирующее значение в производстве. синтетического каучука. Из продуктов переработки газов и нефти ныне вырабатывают также уксусную кислоту, глицерин и жиры для производства моющих средств. При этом экономятся громадные количества пищевого сырья и получается более дешевая продукция. [c.23]


    Использование природных жиров в качестве сырья для гидрогенизации нецелесообразно, так как при этом процессе глицерин превращается в менее ценный изопропиловый спирт. Поэтому предварительно проводят двухступенчатую обработку жиров (гидролиз и этернфикация выделенных свободных кислот низшими спиртами) или одностадийную переэтерификацию триглицеридов низкомолекулярным спиртом (как правило, метиловым). Переэтерификацию можно вести в присутствии кислотных (H2SO4) и щелочных (MgO, aO, HjONa) катализаторов. [c.32]

    Нахождение п получение 2-аминоэтансульфокислоты. При исследовании различных составных частей бычьей желчи [148] выделено азотсодержащее слабокислое вещество, растворимое в воде и лишь в незначительной степени в спирте. Присутствие серы в этом соедпненпи было отмечено значительно нозже [149]. 2-Ами-ноэтан-1-сульфокислота (таурин), найденная в желчи в виде амида холевой кислоты [150, 151], содержится также в различных частях некоторых организмов [152]. Лучшим природным источником для получения ее является большой мускул моллюска абалона (74 кг мускула дают 362 г таурина). Таурохолевая кислота может быть гидролизована путем нагревания с обратным холодильником приблизительно в течение 3 час. с 4 н. соляной кислотой [153]. [c.132]

    Хлорирование с последующим гидролизом в спирты является одним из путей химической переработки природных газов. Метан при пропускании с хлором над катализаторалш ( v. l.i, Sb l и др.) на 90—95% превращается в хлористый метил, который при взаимодействии с водяным паром над Са(ОН)., или другими агентами пре-враш,ается в метанол. Процесс идет по общей реакции  [c.524]

    Еще один пример, который также находит повседневное применение, касается специфического гидролиза пенициллинамидазой природного пенициллина О в препаративных количествах, при этом опять-таки используется хроматографический процесс [129]. В результате образуется чистый продукт гидролиза — 6-аминопеницнллановая кислота, свободная от примесей, которая затем может быть исиользована для синтеза всех видов полусинтетических производных пенициллина. В противополо/кность нестабильному растворимому ферменту фермент, переведенный в нерастворимое состояние, не проявляет потери активности [c.261]

    При полном гидролизе белки и пептиды распадаются иа а-амино-карбоновые кислоты, H2N— HR—СООН. К настоящему времени из гидролизатов белков удалось выделить более 20 так называемых природных аминокислот , которые по конфигурации асимметрического атома углерода принадлежат к одному и тому же стернческому ряду (L), отличаясь друг от друга лишь остатками R. Помимо природных аминокислот, выделяемых из белков, известны также редкие аминокислоты (см. ниже). Все а.минокислоты можно рассматривать как С-замещенные производные аминоуксусиой кислоты. Их строение может быть установлено окислительным расщеплением, в результате которого боковая цепь вместе с а-углеродным атомом превращается в альдегид  [c.349]

    Крахмал. Крахмал является важнейшим резервным углеводом растений. Он образуется из углекислоты, усваиваемой растениями с помощью хлорофилла, и попадает затем в различные части растения, где используется в качестве строительного вещества. В периоды сильной ассимиляции он откладывается в корнях, клубнях и семенах (особенно обильно, например, в картофеле и семенах хлебных злаков). В холодной воде крахмал почти совсем не растворим, но горячая вода растворяет его в значительной степени, причем образуется вязкий раствор, не восстанавливающий фелингову жидкость и при охлаждении застывающий в студнеобразную массу (крахмальный клейстер). Природный крахмал всегда содержит немного фосфора, количество которого в разных видах бывает различным (0,02—0,16%). Этот фосфор, по-видимому, имеет значение для энзиматического распада крахмала. Из продуктов гидролиза картофельного крахмала была выделена глюкозо-6-фосфорная кислота. На основании исследований Макэнна различают две фракции крахмала амилозу и а м и л о-пектин (вещество оболочки). Первая растворяется в воде без образования клейстера и окрашивается иодом в чисто-синий цвет. Амило-пектин, наоборот, с горячей водой образует клейстер и от иода приобретает фиолетовую окраску. Отделение амилопектина может быть осуществлено путем извлечения щелочами или посредством электродиализа отделение амилозы достигается осаждением различными органическими веществами — спиртами (например, амиловым), сложными эфирами, кетонами, меркаптанами, парафинами. [c.454]

    Прн частичном гидролизе китайского таннина оказалось возможно выделить ж-галлоилгалловую кислоту (Герциг), а при ацилированин ею глюкозы Э. Фишеру удалось получить препараты, во всех отношениях подобные природному китайскому таннипу и дающие типичные для дубильных веществ реакции (коагуляция растворов клея, желатинирование спиртового раствора мышьяковой кислоты и т. д.). [c.671]

    В отличие от других металлов ионы N1 и Со в природных водах подвержены гидролизу в меньшей степени. Вклад гидроксокомплексов для никеля становится ощутимым при pH > 6, а для кобальга - при pH > 9. В обоих случаях доминирующими гидроксоформами являются Ni(OH)2 и Со(ОН)г. В речных и озерных водах степень закомплексованности никеля и кобальта обычно не превышает 40-50% Однако несмотря на существенный вклад растворимых форм никеля и коба1п.та в общее содержание этих металлов в воде, подавляющая их часть переносится речными водами во взвешенном состоянии [c.106]

    Иногда возникает необходимость в твердых стандартных образцах, содержащих следовой компонент в известной концентрации (например, фи анализе почв). Для приготовления твердых стандартов упаривают досуха раствор, содержащий матрицу и определяемое вещество, а сухой остаток гомогенизируют. Можно также прибавить раствор следового компонента к сухой матрице, смесь высупшть и диспергировать. Однако во всех случаях необходимо контролировать процесс приготовления твердых стандартов, поскольку не исключена опасность гидролиза и окисления определяемого вещества, возрастающая по мере увеличения степени гомогенизации Кроме того, при анализе природных объектов существует проблема получения достаточно чисться искусственных матриц, не содержащих следового компонента [c.161]

    Просев чешуйчатого природного графита — термическое рафинирование при 2500 50 С — сушка в целях удаления влаги из графита — виброизмельчение — холодное и горячее окисление в смеси концентрированных серной и азотной кислот ю образования МСС с Н2804 — гидролиз—декантация — промывка осадка на фильтре дистиллированной водой — обезвоживание этиловым спиртом. Далее осадок после отсасывания спирта переносят в емкость и разбавляют этиловым спиртом или ацетоном до концентрации 38-42 г/л растворителя. [c.366]

    Его обычно получают не формилированнем фурана (реакция Гаттермана), а гидролизом природных полисахаридов серной кислотой. [c.514]

    Пентозы (СяНюОз). Пентозы встречаются в виде природных сложных пенто-занов (СзНяО,),,. которые входят в состав древесины, соломы и многих других отходов сельскохозяйственного сырья. При кислотном гидролизе пентозаны переходят в пентозы. [c.244]

    Общая щелочность воды. Под общей (или титруемой) щелочностью воды подразумеваются все ионы гидроксила, способные связываться с ионами водорода. Причиной появления щелочности а природной воде является гидролиз солей, образованных слабыми кислотами и сильными основаниями, проходящий по схеме А -1-НОНч=г НА + ОН-. При введении в воду ионов водорода это равновесие смещается вправо и гидролиз соли доходит до конца. Количество миллиграмм-эквивалентов кислоты, израсходованное [c.130]

    При коагулировании происходит осветление и обесцвечивание воды. Природные воды загрязнены гуминовыми веществами, гли-1Г0Й, кремниевой кислотой и др. Частички всех этих веществ несут иа себе отрицательный заряд. Удаляют эти примеси с помощью коагулянтов — солей, образованных слабыми основаниями и сильными кислотами. Эти вещества вступают в обменную реакцию с ионами воды, образуя сложные координационные соединения. На практике чаще других коагулянтов используется сернокислый алюминий, поэтому ниже приводится схема продуктов гидролиза этого вещества. [c.142]

    Из всех продуктов гидролиза особенно важными являются координационные соединения с шестью и восемью атомами, которые с нейтральными частицами [Л1(Н20)з(0Н)з]° образуют сетчатую положительно заряженную структуру, способствуюшую процессу коагуляции природных вод. [c.143]

    Хроматографический анализ органических веществ развивался попутно с хроматографией неорганических веществ. В 1935— 1936 гг. появились первые сообщения об успешном применении метода Цвета в анализе синтетических красителей. Из жидкофазных вариантов хроматографии наиболее широкое применение в органической и биологической химии получила бумажная хроматография. Это тонкий микрометод, позволяющий разделять смеси нескольких десятков компонентов на полоске пористой бумаги, которая выполняет роль хроматографической колонки. Хроматограмма получается в виде пятен, окраска которых соответствует природной окраске разделяемых компонентов смеси. При анализе бесцветных веществ пятна проявляют, опрыскивая бумагу реактивом, образующим с разделяемыми компонентами окрашенные соединения. Например, при определении аминокислотного состава белков после их гидролиза бумагу опрыскивают раствором нин-гидрина, в результате чего на поверхности бумаги появляются пятна розового цвета, соответствующие индивидуальным аминокислотам (см. рис. 1.2). Если разделяемые бесцветные вещества обладают способностью к флуоресценции, бумагу облучают ультрафиолетовыми лучами (кварцевой или ртутной лампой) и тогда хроматограмма становится видимой. Этот случай можно наблюдать при разделении смеси антрахинонов, пятна которых в ультра- [c.9]


Смотреть страницы где упоминается термин Природная гидролиз: [c.68]    [c.118]    [c.218]    [c.309]    [c.360]    [c.413]    [c.219]    [c.86]    [c.187]    [c.300]    [c.273]    [c.398]    [c.398]    [c.885]    [c.106]    [c.22]   
Химия целлюлозы и ее спутников (1953) -- [ c.79 , c.80 ]




ПОИСК







© 2025 chem21.info Реклама на сайте