Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость вулканизации физико-химические

    Указанные химические ускорители пластикации практически не влияют на скорость вулканизации и на физико-механи- [c.171]

    Известна роль активаторов вулканизации — окислов металлов, жирных кислот и других [2, с. 468], которые являются обязательными компонентами вулканизующих систем. Совместное применение окислов металлов с ускорителями и серой позволяет повышать скорость структурирования макромолекул в главном периоде при сохранении индукционного периода, когда резиновая смесь сохраняет вязкотекучие свойства это особенно важно при формировании и вулканизации массивных и многослойных изделий. Активаторы позволяют повышать эффективность присоединения серы к эластомеру они влияют на концентрацию и характер образующихся поперечных связей, направляя их в сторону меньшей сульфидности, участвуют в реакциях с ускорителями, образуя металлсодержащие соединения (например, кар-баматы, меркаптиды), являющиеся и ускорителями, и в некоторых случаях стабилизаторами. В последних исследованиях [12] рассматриваются поверхностно-активные свойства окислов металлов, стеаратов цинка, а также взаимодействие активной поверхности с ускорителями и образование вулканизационных узлов с участием дисперсной фазы процесс вулканизации рассматривается как гетерогенный. Сложные аспекты физико-химического действия активаторов в процессе вулканизации описаны в монографиях [1—6] и здесь подробно не рассматриваются. [c.11]


    БК относится к кристаллизующимся каучукам, поэтому его пе-наполненные вулканизаты имеют высокие физико-механические показатели. Основная особенность БК — низкая непредельность. Это определяет высокую химическую стойкость резин, полученных из них, стойкость к тепловому и атмосферному старению и к действию озона, кислот и щелочей, малую скорость вулканизации. [c.16]

    Как уже отмечалось, резиновые смеси на основе комбинаций каучуков представляют гетерогенные системы, характер которых зависит как от типов смешиваемых эластомеров, так и технологии изготовления. Свойства получаемых резин определяются скоростью и степенью вулканизации отдельных фаз, степенью их совулканизации, размерами частиц фаз и наличием меж-фазного переходного слоя. Двухфазная структура в смесях эластомеров приводит к улучшению технологических свойств резиновых смесей и к повышению физико-механических показателей резин. Образование межфазного слоя способствует более быстрому уменьшению размеров микрофаз при смешении и возрастанию числа химических связей в зоне контакта каучуков при вулканизации, т. е. улучшению физико-механических показателей резин [23]. [c.21]

    Исследование вулканизации каучуков общего и специального назначения в присутствии катионоактивных ПАВ — соединений ряда алкамонов, а также бисчетвер-тичных аммонийхлоридов продолжено в работах [97]. Проведенные физико-химические и технологические исследования показали, что активирующая способность изученных ПАВ определяется их структурой, и уменьшение. длины углеводородного радикала у катиона приводит к ее снижению, а также в значительной степени зависит от типа ускорителей, применяемых в резиновых смесях, и дозировки вулканизующей группы. Наиболее эффективными эти катионные ПАВ оказались в смеси с тиазоловыми ускорителями. Полагают, что сокращение оптимальной продолжительности вулканизации в некоторых случаях в 2—4 раза в зависимости от типа ускорителя и наполнителя происходит за счет возрастания скорости сшивания, а не уменьшения индукционного периода. Обнаруженный авторами методом ИКС факт взаимодействия алкамонов с каптаксом с образованием N-замещенного производного каптакса объясняет повышенную эффективность этих катионных ПАВ с тиазоловыми ускорителями, но не дает оснований для столь общих выводов относительно влияния катионных ПАВ на кинетику вулканизации эластомеров  [c.243]


    Скорость химической релаксации напряженпя зависит не только от примесей, а главным образом от типа тех поперечных связей, которые образуются при вулканизации. В случае серной вулканизации типичных каучуков (натуральный, бутадиен-стирольный и др.) характер связей завпсит от характера вулканизующей системы. Сульфенамидные ускорители обеспечивают образование полисульфидных связей. . . —С—8 ,—С—. . тиурам без серы — ди-и моносульфидных связей. . . —С—5—5—С—. .. и. —С—5—С—. . . при радиационной вулканизации образуются связи —С—С—. В соответст-ВИ1Г с энергией этих связей скорость тер тческой релаксации первых вулканизатов существенно больше, чем последних. Поскольку количество атомов серы в полисульфидных связях с увеличением длительности вулканизаш. и уменьшается, по скорости релаксации напряжения можно судить о степени вулканизации серных вулканизатов. О характере вулканизационных структур и их влиянии на физико-химические свойства вулканизатов с . работы Б. А. До-гадкина с сотр. в Коллоидном журнале за 1953—1965 гг. — Прим. перев. [c.106]

    Циональные группы, способные взаимодействовать с метилольныМй группами, также замедляют вулканизацию каучуков АФФС. Поэтому аминьц например уротропин фенил-р-нафтиламин (неозон Д), альдоль-а-нафтиламин, Ы,Ы -циклогексил-гг-фениленди-амин (продукт 4010) М-изопропил-Ы -циклогексил-гг-фениленди-амин (продукт 1040ЫА), дифенилгуанидин и другие, снижают физико-механические показатели смоляных вулканизатов Резины на основе каучуков, содержащих фенольные антиоксиданты, имеют более высокие скорость и степень вулканизации при применении АФФС, чем резины на основе каучуков, содержащих аминные стабилизаторы. При вулканизации производными дисульфидов алкилфенолов отрицательное влияние аминов проявляется в меньшей степени. Ы Изопропил-Ы -циклогексил-гг-фенилендиамин, щк и другие производные г-фенилендиамина, не используются для защиты резин, вулканизованных АФФС, от озонного старения При вулканизации производными дисульфидов алкилфенолов, содержащих до 3—4% метилольных групп совместно с серой или хлоксилом, применяются названные химические антиозонанты. [c.161]

    Выбор режима отверждения или вулканизации обычно проводят путем исследования кинетики изменения какого-либо свойства отверждаемой системы электрического сопротивления и тангенса угла диэлектрических потерь, прочности, ползучести, модуля упругости при различных видах напряженного состояния, вязкости, твердости, теплостойкости, теплопроводности, набухания, динамических механических характеристик, показателя преломления и целого ряда других параметров [140, 178—183]. Широкое распространение нашли также методы ДТА и ТГА, химического и термомеханического анализа, диэлектрической и механической релаксации, термометрического анализа и дифференциальной сканирующей калориметрии [140, 178, 184—187]. Все эти методы условно можно разбить на две группы методы, позволяющие контролировать скорость и глубину процесса отверждения по изменению концентрации реакционноспособных функциональных групп, и методы, позволяющие контролировать изменение какого-либо свойства системы и установить его предельное значение. Методы второй группы имеют тот общий недостаток, что то или иное свойство отверждающейся системы ярко проявляется лишь на определенных стадиях процесса так, вязкость отверждающейся системы можно измерять лишь до точки гелеобразования, тогда как большинство физико-механических свойств начинает отчетливо проявляться лишь после точки гелеобразования. С другой стороны, эти свойства сильно зависят от температуры измерения, и если осуществлять непрерывный контроль какого-либо свойства в ходе процесса, когда необходимо для достижения полноты реакции менять и температуру в ходе реакции или реакция развивается существенно неизотермично, то интерпретация результатов измерений кинетики изменения свойства в таком процессе становится уже весьма сложной. [c.37]

    Для резин на основе водородсодержащих фторкаучуков — сополимеров ВФ с перфторированными мономерами—возможности участия ингредиентов в химических превращениях фторэластомеров возрастают вследствие их повышенной реакционной способности. Наполнители и агенты вулканизации в той или иной мере активируют отщепление галогенводородов, а акцепторы галогенводородов (оксиды и гидроксиды щелочноземельных металлов) нейтрализуют этот эффект. Пока не известны добавки, позволяющие полностью подавить отщепление галогенводородов при нагревании резин до 250—300 °С. Они лишь уменьшают их количество до уровня, соответствующего термическому распаду исходного фторкаучука. Наибольшее отщепление галогенводородов при термическом воздействии наблюдается для аминных вулканизатов сополимеров ВФ и ГФП (СКФ-26), оно значительно меньше для пероксидных и радиационных вулканизатов. Бнсфенольные вулканизаты по стойкости к термоокислительному старению превосходят аминные [201]. Это проявляется в значительно меньшей скорости релаксации напряжения вулканизатов на воздухе при 200°С, меньшем изменении физико-механических свойств при старении при-250°С. [c.193]



Смотреть страницы где упоминается термин Скорость вулканизации физико-химические: [c.21]    [c.90]    [c.19]   
Тепловые основы вулканизации резиновых изделий (1972) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Вулканизация скорость

Химические скорость



© 2025 chem21.info Реклама на сайте