Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак механизм окисления

    Механизм окисления аммиака можно представить следующим образом. Кислород и аммиак диффундируют из потока газов к по- [c.156]

    Механизм гетерогенного каталитического окисления аммиака состоит из следующих последовательных стадий  [c.215]

    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]


    Предложите возможный механизм окисления аммиака на платине, как катализаторе  [c.174]

    При обсуждении механизма окисления аммиака на платине (как катализаторе) можно предположить адсорбцию как кислорода, так и аммиака на поверхности платины. Первый подход рассмотрен в предыдущей задаче. Какая связь, N—Н или 0—0 легче разрывается на платине Предположим, что на платине имеет место адсорбция молекул аммиака и их диссоциация [c.174]

    Предполагаемый механизм окисления аммиака [c.223]

    Исходя из приведенных выше данных, можно судить о составе промежуточных веществ, но поскольку последовательность их образования не изучена, о механизме окисления аммиака пока можно дать только общее представление. [c.272]

    ОБЩИЕ УСЛОВИЯ И МЕХАНИЗМ ОКИСЛЕНИЯ АММИАКА [c.33]

    Уравнение (1), как видно, является реакцией девятого порядка, а уравнение (2) —седьмого порядка, поэтому они не отображают механизма окисления аммиака. Между тем определение истинного механизма окисления аммиака имеет важное теоретическое и практическое значение. [c.139]

    Высокую активность платины и, в особенности, сплавов платины с родием и палладием В. П. Марков, в соответствии со своей гипотезой механизма окисления аммиака, объясняет тем, что эти металлы адсорбируют не только кислород, но и водород, способствующий разложению гидроксиламина. [c.29]

    Влияние функции распределения электронов по энергиям на скорость химической реакции вытекает из анализа результатов изучения некоторых процессов в прикатодной области (синтез аммиака [2], окисление азота [81]). Установлено, что скорость образования продуктов реакции в прикатодной области значительно превышает скорость их образования в положительном столбе тлеющего разряда. Известно, что распределения электронов по энергиям в различных областях разряда различны. В тлеющих разрядах в молекулярных газах могут быть получены так называемые активные газы, содержащие значительные концентрации атомов. Часто полученные активные газы используются для проведения реакций на поверхности твердой или жидкой фазы, для нанесения пленок и т. д. Например, предложен способ активации поверхностей некоторых полимеров [82]. Частично диссоциированный кислород (3—4%), полученный в тлеющем разряде, обтекает поверхность образца, в результате чего уменьшается его (образца) вес и изменяются некоторые свойства (смачиваемость, сила сцепления с покрытиями, нанесенными на образец после такой обработки). Такие явления не наблюдались при обдувании образцов холодным кислородом. Процесс проводился при мощности в разряде 200— 300 вт, давлении — нескольких мм рт. ст., расходе кислорода — 5 моль/сек. Температура образца — 80° С, время обработки — 15 мин. Обработке подвергались образцы из полипропилена, полиэтилена, политетрафторэтилена, поливинилхлорида. Механизм процесса активации, по мнению исследователей, следующий. Атомы кислорода окисляют моле- [c.425]


    Так как на основании приближенного расчета было установлено, что в условиях промышленного процесса количество реагирующего аммиака на 20—60% больше, чем могло пройти к поверхности катализатора, предполагается, что реакция окисления аммиака относится к типу реакций, которые начинаются на поверхности катализатора, но развиваются после этого в газовой фазе по цепному механизму. Таким образом, можно доказать, что действительное количество реагирующего аммиака больше, чем количество аммиака, проходящего из газовой фазы к поверхности катализатора. [c.303]

    Механизм многих каталитических реакций достаточно подробно изучен. К таким реакциям, в частности, относятся окисление сернистого ангидрида, аммиака, метанола, метану, нафталина, синтез аммиака, высших спиртов, конверсия окиси углерода, [c.33]

    Предложено несколько механизмов окисления аммиака на катализаторах [3, 6]. Основное их различие срстоит в том, что в одном случае предполагается образование оксида азота (II) и N2 через промежуточные соединения только на поверхности катализатора, другой — образование N0 происходит только на катализаторе, а образование элементного азота на катализаторе н в объеме газа. [c.39]

    Из литературы известно, что механизм окисления аммиака до N0 па нлатнпоидных катализаторах протекает через ряд промежуточных реакций. [c.142]

    Что касается механизма окисления аммиака в присутствии кобальтовых катализаторов, то мы предполагаем, что важнейшей стадией этого процесса является взаимодействие адсорбированного аммиака с кислородом поверхностных слоев кристаллической решетки С03О4 с образо- [c.232]

    Начнем с проблемы подбора катализаторов, которая нам представляется самой трудной из всех проблем теории катализа и разработана меньше других. Подбор неотделим от представлений о глубоком механизме процессов, который нам недостаточно известен, но несомненно, не один и тот же во всех случаях. Он требует четкого представления о химии и структуре активных контактов, а для применяемых многофазных систем эти данные, как правило, отсутствуют. Он требует также объективной характеристики большого числа контактов разного типа и состава, полученных в сравнимых условиях, а такого материала также нет. Трудность усугубляется тем,что,нарядустакими почти универсальными катализаторами, как галогениды алюминия или ионы водорода в органическом катализе или платина и палладий, встречаются контакты с узкой областью применения, как, например, металлический натрий при полимеризации дивинила или серебро при мягких окислительных реакциях и, наконец, ферменты с их сугубой специфичностью . Мы знаем, с одной стороны, такие реаг ции, как разложение перекиси водорода и озона, ускоряемые почти любым твердым телом, и, с другой стороны, такие реакции, как синтез аммиака или окисление этилена в окись этилена, для которых известны единичные катализаторы. Повидимому, —это отражение многообразия глубоких механизмов катализа, с одной стороны, и существования веществ, поливалентных и моновалентных по своим каталитическим функциям, с другой. [c.10]

    Существенное влияние природы углеродного материала анода оказывает на механизм окисления первичных алифатических аминов в ацетонитриле [204]. На стеклоуглероде М-пропиламин окисляется по схеме, аналогичной предложенной для платинового электрода. Эта схема включает образование катион-радикала претерпевающего дальнейшие превращения с выделением аммиака или амидогенных радикалов  [c.156]

    Субстраты, окисляюгциеся в тканях, постепенно дегидрируются, т. е. теряют под влиянием различных последовательно включающихся в окислительный процесс дегидрогеназ атомы водорода. При аэробном окислении водород, проходя через ряд промежуточных переносчиков, встречается с кислородом, получающим электроны через цитохромную систему. Соединение водорода с кислородом приводит к образованию одного из конечных продуктов дыхания — воды. Субстрат, присоединяя воду и теряя водород, превращается в конце концов в соединение, имеющее характер кетокислоты. К числу кетокислот, образующихся при окислении различных субстратов в организме, относятся пировиноградная кислота, щавелевоуксусная, кетоглютаровая и др. Кетокислоты, подвергаясь частью окислительному декарбоксилированию, частью [3-декарбоксилиро-ванию, распадаются с отщеплением СО2. Остающаяся часть окисляемой молекулы вновь подвергается тем же превращениям, сопровождающимся отщеплением водорода и образованием воды, присоединением воды и анаэробным образованием СОа. Таким образом, образование Н2О и СО2 при тканевом дыхании является результатом чередующихся дегидрирований и декар-боксилирований субстрата дыхания. Именно так окисляются все важнейшие субстраты тканевого дыхания. Азотистые вещества, например аминокислоты, окисляются таким же образом, но имеющийся в этих соединениях азот в процессе окисления отщепляется в форме аммиака или переносится на соответствующие акцепторы аминных групп (стр. 332). Более конкретно механизм окисления ряда промежуточных продуктов аэробного обмена рассматривается на стр. 258,291. [c.237]

    Ряд гипотез относительно механизма окисления аммиака на платиноидных катализаторах сводится к тому, что N0 образуется через ряд промежуточных реакций в результате последовательных переходов и перераспределения связей. Так, по данным В. П. Маркова, кислород, адсорбированный на поверхности платины в атомарном состоянии, реагирует с аммиаком, образуя гидроксиламин О-ЬЫНз- -МНгОН, который распадается на N0 и НгО по реакции 2ЫНгОН->-ЫО-НЗН 4-0 гЫО + НгО. Выделяющийся при этом водород адсорбируется платиной и образует с кислородом воду. Образование элементарного азота возможно в случае перехода в газовый объем гидроксиламина, не успевшего разложиться на поверхности катализатора. При взаимодействии гидроксиламина с кислородом или азотистой кислотой, находящимися в промежуточных продуктах реакции окисления аммиака, может образоваться закись азота по следующим уравнениям  [c.28]


    Реакторы для производства синильной кислоты. Синильную кислоту получают путем пропускания смеси метана, воздуха и аммиака через катализатор в форме платиновых сит при температуре 1020° С (способ Андрусова). Недавно было установлено, что механизм этой реакции идентичен механизму реакции окисления аммиака в окись азота. [c.309]

    Обширные исследования кинетики были выполнены лишь для таких наиболее распространенных реакций, как синтез аммиака или окисление SO2. Однако даже здесь до сих пор нет единого мнения о точном механизме. Для моделирования выбирают лучшие из имеющихся уравнений скорости. Если же такие уравнения отсутствуют, то в некоторых случаях их задают в предположении, что реакция является элементарной и скорость при равновесии равна нулю, а константа скорости зависит только от температуры согласно фактору Аррениуса ехр(—EjIRT). Таким образом, для реакции А - - В С можно записать [c.209]

    Механизм окисления аммиака на катализаторе до сих пор не выяснен. Предполагается промежуточное образование КНО, что недосговерно. [c.484]

    На основании этой классификации ими предложен механизм окисления гидразина различными окислителями и объяснены причины образования различных продуктов реакции. Моноэлектроноакцепторы, к которым относятся ионы церия (IV), железа (III), марганца (III), кобальта (III) и другие, окисляют гидразин до азота и аммиака азотистоводородная кислота при действии моноэлектроно акцепторов не образуется. При этом они приняли предположение Куп об образовании гидра- [c.31]

    По Р. Вендландту, механизм окисления аммиака связан с протеканием ряда промежуточных превращений, причем 97% МНз реагирует по схеме  [c.33]

    Переаминирование есть основной процесс, вызывающий быстрый переход от одних аминокислот к другим. Этот процесс происходит в организме очень интенсивно и играет большую роль в круговороте аминокислот и получаемых из них белков. На стр. 377 механизм этой реакции был подробно рассмотрен. Наряду с ним, в небольшой степени переаминирование, по-видимому, может идти также по другому механизму окисления аминокислоты в аминокетокислоту, гидролитического отщепления от нее аммиака и присоединения последнего к другой аминокислоте. При этом механизме, в присутствии меченых групп N Hg, тяжелый азот должен переходить в образующуюся аминокислоту и в аммиак. Это обнаружил Шемин при действии гомогената сердечной ткани на смесь а-кетоглютаровой кислоты, бикарбоната аммония и Ы -аланина (или лейцина). Большая часть переходила в образующуюся глютаминовую кислоту, но некоторое его количество также оказалось в выделенном аммиаке. Этот механизм переаминирования, однако, отступает на второй план по сравнению с основным, идущим с промежуточным образованием оснований Шиффа. [c.492]

    Цепной механизм окисления аммиака на платиновородиевом катализаторе. [c.25]

    Ему же соответствует кинетика окислительного аммонолиза пропилена, скорость которого в определенных пределах не зависит от парциальных давлений кислорода и аммиака. Два последних кинетических уравнения близки окислительно-восстановительному механизму, когда окисление восстановленных активных центров катализатора протекает быстро и не лимитирует общей скорости процесса. В этом случае наблюдается первый порядок окисления и окислительного аммонолиза по пропилену (г = кРСзНз)- [c.414]

    Все эти катализаторы работают по рассмотренному ранее окислительно-восстановительному механизму, и скорость реакции зависит только от парциального давления пропилена (г = йЯсзНб )> свидетельствуя о лимитирующей стадии взаимодействия пропилена с окисленным активным центром катализатора, где образуется хе-мосорбированный аллильный радикал. В свою очередь, на другом активном центре сорбируется аммиак, вероятно, в виде иминного радикала NH. Взаимодействие их друг с другом с участием кислорода решетки и дает акрилонитрил. [c.424]

    Володин Ю, E., Барелко В. В. Нестационарные явления в реакции окисления аммиака на платине и гипотеза о разветвленно-цеыном механизме//Ма-териалы Второй Всесоюзной конференции по кинетике каталитических реакций. Кинетика-2 , Ч. I, Новосибирск Ин-т катализа СО АН СССР, 1975,— С, 21-28, [c.27]


Смотреть страницы где упоминается термин Аммиак механизм окисления: [c.249]    [c.302]    [c.119]    [c.232]    [c.23]    [c.311]   
Справочник азотчика (1987) -- [ c.39 , c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак окисление

Контактное окисление аммиака механизм

Механизм процесса окисления аммиака

Общие условия и механизм окисления аммиака

Окисление окисление аммиака



© 2025 chem21.info Реклама на сайте