Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление гетерогенно-каталитическое

    Реакция окисления оксида серы (IV) до оксида серы (VI), лежащая в основе процесса контактирования обжигового газа, представляет собой гетерогенно-каталитическую, обратимую, экзотермическую реакцию и описывается уравнением  [c.161]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]


    Пространственно-временная самоорганизация гетерогенного каталитического процесса. Одновременное протекание химической реакции и диффузии может привести к образованию периодических по пространству стационарных состояний — диссипативных структур [84—89]. Покажем возможность образования неоднородных стационарных состояний (макрокластеров) на примере механизма реакции окисления оксида углерода на платиновом катализаторе. Математическую модель поверхностной каталитической реакции с учетом поверхностной диффузии будем строить, исходя из следующих предположений [83]. Будем считать, что диффузия адсорбированного вещества X происходит за счет его перескока на соседние свободные места Z. Схема расположения занятых мест X и свободных мест Z на поверхности катализатора показана на рис. 7.10 (для наглядности взят одномерный случай). Пусть X, г — степени покрытия X та X соответственно, ро — вероятность перескока молекул с занятого места на свободное (микроскопическая константа), е — характерный размер решетки. Тогда скорость изменения г] = Ах М степени покрытия X в сечении [c.306]

    Из всех методов химического обезвреживания наиболее приемлемы методы термического обезвреживания. К термическим методам обезвреживания газовых и жидких промышленных отходов относят жидкофазное окисление, гетерогенное каталитическое окисление и огневой метод. [c.193]

    Голодец Г. И. Гетерогенно-каталитическое окисление органических веществ.-Киев Наукова думка, 1978. 367 с. ил. [c.138]

    Термическое обезвреживание стоков [49—51] является наиболее распространенным методом очистки, который используется в случаях высокой концентрации органических примесей, а также при наличии биохимически неокисляемых соединений. Различают жидкофазное окисление, гетерогенное каталитическое окисление и огневой метод. Последний характеризуется достаточной надежностью, причем высокой степени очистки достигают в циклонных камерах. Для сточных вод, содержащих хлорид натрия, температура отходящих газов после камеры должна поддерживаться в пределах 900—950 °С. Полного удаления органических примесей достигают прокаливанием поваренной соли при 950—1100°С в течение 30—40 с [52]. [c.34]

    Механизм гетерогенного каталитического окисления аммиака состоит из следующих последовательных стадий  [c.215]


    Возможен синтез каталитических систем, состоящих из катализаторов и ингибиторов. При гетерогенно-каталитическом жидкофазном окислении олефинов среднего молекулярного веса в соответствующие окиси было показано, что процесс в упрощенном виде протекает согласно схеме  [c.48]

    Реакция окисления двуокиси серы — гетерогенно-каталитическая, и это выражение представляет собой квазигомогенную кинетическую зависимость, описывающую экспериментальные данные для катализатора стандартного состава, с зернами определенного размера и формы. Так как реакция идет с изменением объема, при расчете следует пользоваться единицами измерения концентрации. [c.242]

    Окисление о-ксилола. Как и нафталин, о-ксилол можно окислять во фталевый ангидрид в относительно жестких условиях (в гетерогенно-каталитической системе) м.- и п-изомеры при этом образуют соответствующие фталевые кислоты с малыми выходами и большой степенью конверсии в продукты более глубокого окисления (бензойную и малеиновую кислоты). Поэтому м- и п-изомеры окисляют в системе газ — жидкость при более низких температурах агентами окисления [НЫОз, 5, (НН4)2504 в одну или две ступени. [c.173]

    Рассмотрим автоколебательные гетерогенно-каталитические системы первого класса на примере реакции окисления водорода на никелевых и платиновых катализаторах. Поверхностное происхождение автоколебаний в ходе реакции окисления водорода на платиновой фольге было установлено в работе [129], в которой [c.316]

    Важно отметить, что поскольку гетерогенно-гомогенный механизм для гетерогенно-каталитических реакций окисления в жидкой фазе является общим случаем, а не частным, в отличие от газофазных процессов, этими реакциями можно управлять совместно при помощи катализаторов и ингибиторов. [c.43]

    К первой группе относятся окислы металлов переходной валентности, у которых катионы решетки сохраняют свои индивидуальные свойства. В этом случае можно ожидать аналогию в механизме реакций гетерогенно-каталитического окисления на окислах и гомогенного химического окисления в растворах. Для данной группы катализаторов обоснован механизм с первичным взаимодействием за счет водорода органической молекулы и кислорода окисла металла [18], например  [c.155]

    Настоящая книга посвящена рассмотрению современного состояния и перспективам разработки и внедрения отечественных процессов очистки сернистых газов. Значительное место отведено методам окислительной конверсии сероводорода с учетом того, что разработка процессов гомогенного и гетерогенного каталитического окисления сероводорода и тиолов может оказать в ближайшие годы заметное влияние на технологию переработки сернистых нефтей, газовых конденсатов, сернистых природных и попутных нефтяных газов и связанные с этим проблемы экологии. [c.6]

    Применение гетерогенного катализа в производстве органических соединений отличается большим разнообразием. Прямой синтез метилового спирта из водорода и окиси углерода осуществляется путем гетерогенного каталитического процесса. Путем окисления метилового спирта на медном или других катализаторах можно получить формальдегид, необходимый для производства [c.499]

    Л. Я. М а р г о л и с. Гетерогенное каталитическое окисление углеводородов, Изд. Химия , 1967. [c.90]

    Уравнение (VIII..Я2) является основой для расчета многостадийных трубчатых адиабатических реакторов в той же мере, как и для периодических, если только реакция идет без изменения объема реагирующей смеси. Так как, однако, реакторы такого тина часто применяются для проведения газофазных реакций, сопровождающихся изменением объема (например, синтез метилового спирта и окисление двуокиси серы), выведем уравнения для трубчатого реактора, используя в качестве меры концентрации массовую долю. В случае гетерогенно-каталитической реакции будем предполагать, что для нее най- -депо квазигомогенное кинетическое выражение, согласно методам, описанным в [c.225]

    По зтим причинам, одной из основных задач в производстве формальдегида неполным окислением метана является, наряду с углублением знаний о механизме цепного окисления, переход к гетерогенным каталитическим процессам с целью подбора активных и селективных катализаторов и инициаторов, в присутствии которых образуется продукт, лишенный нежелательных примесей. [c.166]

    При гетерогенных каталитических реакциях промежуточные соединения образуются на поверхности катализатора. В этом случае вопрос значительно усложняется структурой поверхности, характером сорбции и т. д. Можно, однако, считать, что при гетерогенном катализе при взаимодействии реагентов с поверхностными атомами катализатора образуются вещества, мало отличающиеся от обычных химических соединений. При контактном окислении SO. воздухом над Fe. Oy протекают реакции  [c.26]


    Сходные рассуждения используют и для объяснения осцилляций при гетерогенно-каталитическом окислении СО. При этом обычно предполагают, что окисление СО осуществляется в основном по схеме Ленгмюра-Хиншельвуда, т.е. через взаимодействие адсорбированных интермедиатов  [c.391]

    В работах Н. И. Семенова гетерогенные каталитические реакции рассматриваются как поверхностные радикальные цепные реакции, в которых катализатор, обладая свободными валентностями, может действовать как свободный радикал, возбуждая образование цепей. Так, реакция окисления СО кислородом [c.166]

    В качестве примеров гетерогенно-каталитических реакций можно указать на окисление диоксида серы в триоксид при контактном методе производства серной кислоты, синтез аммиака, окисление аммиака при производстве азотной кислоты. [c.200]

    Опыт 2. Исследование процесса окисления формальдегида в сточных водах продуктами гетерогенно-каталитического распада пероксида водорода. [c.104]

    Хотя природа поверхности оказывает несомненное влияние на продолжительность периода Tj и, вероятно, периода г. , она не имеет, согласно данным Дэя и Пиза [9], большого влияния на границы давление—температура областей холоднопламенного и высокотемпературного воспламенений. Эти исследователи, изучая систему пронан—кислород, получили картину, подобную изображенной на рис. 2 в пирексовых сосудах, обработанных азотной или фтористоводородной кислотами или покрытых КС1. В последнем случае наблюдалось значительное удлинение индукционного периода, особенно при низких температурах. Анализ продуктов, полученных в серии опытов с применением аналогичной обработки, показал наличие перекисей во всех сосудах, кроме покрытых КС1. На основании этих фактов Дэй и Пиз высказали сомнение относительно роли перекисей в механизме образования холодного пламени, и одновременно, подняли вопрос о влиянии ацетальдегида в связи с тем, что, согласно более раннему исследованию Пиза [34], покрытие стенок сосуда слоем K I обусловливает значительно более низкую концентрацию ацетальдегида, чем в сосудах без такого покрытия. По нашему мнению, так как реакция не обнаруживает тенденции к достижению стационарного состояния, обрыв цепей на поверхности сосуда мон ет лишь замедлить скорость реакции, но не способен полностью предотвратить достижение критических концентраций альдегидов и перекисей, вызывающих образование холодйого пламени. Эти критические концентрации зависят главным образом от давления и температуры и достигаются спустя более или менее длительное время в зависимости от природы поверхности. То обстоятельство, что в непрерывной системе не обнаружены перекиси в покрытой КС1 трубке, не свидетельствует против их кратковременного существования аналогичным образом при гетерогенном каталитическом окислении ацетальдегида на покрытой КС1 поверхности не требуется достин ения критической концентрации для течения самоускоряющейся реакции. [c.259]

    В промышленных условиях активность катализатора практически любого нефтехимического гетерогенно-каталитического процесса со временем уменьшается вследствие образования коксовых отложений на активной поверхности. Для восстановления основнь1х характеристик закоксованные катализаторы периодически подвергают окислительной регенерации. Окислительная регенерация закоксованных катализаторов представляет собой совокупность химических реакций, протекающих при взаимодействии кислорода с коксом и приводящих к его удалению с активной поверхности катализатора в виде газообразных продуктов окисления. Физико-химические закономерности этих реакций определяются количеством и способностью кокса к окислению, составом газовой фазы, температурой и свойствами поверхности, на которой происходит окисление. [c.68]

    В и идкой фазе гетерогенно-каталитические процессы осуществляют в двух вариантах с однофазным и многофазным (обычно двухфазным) потоком. Наиболее часто встречается система жидкость — газ — твердый катализатор. При этом жидкость образует снлоншую, а газ дисперсную фазу. Системы этого рода имеют место в наиболее важных жидкостных гетерогенно-каталитических процессах (гидрирование, окисление, алкплирование, хлорирование и др.). Таким образом, системы в целом являются двух- или трехфазными. [c.47]

    Общая картина процесса определяется соотношением скоростей поверхностных и объемных реакций и длиной цепи объемных реакций. Если Ра и vз — длина цепи в реакции 3 — мала, то реакция имеет чисто гетерогенно-каталитический характер. Наоборот, при р1 Рв и большом значении vз реакция практически протекает как цепная. По первому варианту, например, происходит окисление среднемолекулярных олефинов в окпсп, а по второму — окисление пропилена в растворе бензола при наличии окисных катализаторов. Когда > Р5, а значение Vз достаточно велико, реакция носит промежуточный гетерогенно-цепной характер. Наконец, когда рз Рг и р5, реакция инициируется на поверхности катализатора и продолжается в объеме, т. е. имеет гетерогенно-гомогенный характер. При чисто гетерогенно-каталитическом механизме скорость реакции в кинетической области пропорциональна концентрации катализатора при гетерогенно-гомогенном механизме в соответ-ствип с уравнением (2.52) скорость реакции будет пропорциональна корню квадратному пз концентрации катализатора. В ряде случаев твердый катализатор-инпциатор имеет и функцию ингибитора, ускоряя обрыв цепей. В этом случае скорость реакции вначале растет с повышением концентрации катализатора, а затем перестает [c.53]

    Регенерация катализаторав путем окисления углеродсодержащих отложений — О бязательный этап гетерогенно-каталитического процесса. Осо бенно велико значение окислительной регенерации в процессах нефтей ер ера ботки и нефтехимии, где иапользуютоя высокопроизводительные гетероген- но-каталитические процессы. [c.3]

    В работах Ройтера, а также Голодца с сотрудниками [38—411 рассмотрены результаты но применению ЛССЭ к реакциям гетерогенно-каталитического окисления. Авторы установили наличие хорошей линейной взаимосвязи между теплотой хемосорбции кислорода на катализаторе и активностью последнего в реакциях полного окисления углеводородов, а также наличие восходящей и нисходящей ветвей в такой зависимости. Аналогичные результаты получены Боресковым и сотрудниками для реакции окисления СН4 и На в отношении теплоты десорбции кислорода для ряда окисных катализаторов [421. [c.162]

    Темкин положил начало широкому применению проточно-циркуляционного метода для изучения кинетики гетерогенно-каталитических процессов [13]. На рис. Х.5 представлена схема установки такого типа для окисления бензола в малейновой ангидрид. Обпщй принцип работы установки ясен из рис. Х.5. Вся циркуляционная система реактор, насос с клапанной коробкой и коммуникации находится в термостате или имеет специальный обогрев. Температура [c.409]

    При гетерогенном каталитическом окислении характеристиками удельной активности материала, обладающего каталитическим действием, служат величина Ъ/Ьд и отнощение (Ь - Ьо)/(Ьо8), где Ьо, Ь — количественная мера автоокисли-тельной активности топлива соответственно в отсутствие и в присутствии данного материала 8 — поверхность металла, см /л топлива [66]. Результаты проведенных исследований показали, что активность порощка меди по отнощению к дизельному топливу при 120°С составила 9.2 10"3 л/см , а отношение Ъ/Ьд 3 8 = 210 см /л. Аналогичные результаты были получены для меди в топливе Т-6 (5.0 10" л/см и Ь/Ьо = 2.51) [66]. [c.120]

    По-видимому, среди большого количества гетерогенных каталитических процессов изменения свойств оксидных катализаторов под воздействием реакционной среды изучены наиболее подробно. Это относится прежде всего к катализаторам окислительно-восстановительных реакций при вариации соотношения концентраций окисляющего и восстанавливающего компонентов в реакционной смеси. С уменьшением этого отношения снижается окисленность катализатора, и в результате наблюдается резкое уменьшение общей скорости реакции при одновременном увеличении селективности в отношении продуктов неполного окисления. Изменение этих параметров на примере реакции окисления акролеина в акриловую кислоту на оксидном ванадиймолибденовом катализаторе [11] представлено на рис. 1.4. Кривая 3 показывает, как меняется с изменением состава реакционной смеси энергия связи кислорода на поверхности катализатора, определяющая каталитические свойства. [c.12]

    Садыков В. А., Цырульников П. Г., Поповский В, В., Тихов С. Ф. Взаимодействие окислов марганца с реакционной средой при гетерогенно-каталитическом окислении СО молекулярным кислородом. П1. Изучение закономерностей формирования стационарного поверхностного слоя//Кинетяка я катализ.— 1981.— Т. 22, № 5.— С. 1219—1226. [c.24]

    Окислительное дегидрирование метанола представляет гетерогенно-каталитический процесс, протекадющий в газовой фазе на твердом катализаторе. В этом процессе совмещены экзотермическая реакция окисления метанола  [c.295]

    Если катализируемая система и сам катализатор находятся в одинаковом агрегатном состоянии (жидком, паро- или газообразном), катализ называют гомогенным. Примерами последнего могут служить хлорирование метана в присутствии паров хлористого сульфу-рила, образование сложных эфиров из спиртов и карбоновых кислот под действием небольших количеств серной или соляной кислот, реакции кислотного гидролиза и т. д. Если же катализируемая система и катализатор находятся в разных агрегатных состояниях, катализ называют гетерогенным. Примерами гетерогенных каталитических реакций являются синтез метанола или высших спиртов из смесей окиси углерода с водородом над твердыми катализаторами, различные гидро- или дегидрирования, процессы дегидроциклизации, каталитический крекинг, окисление бензола в малеиновый ангидрид или нафталина во фталевый ангидрид и т. д. Гетерогенные каталитические реакции бэлее распространены и имеют большее практическое значение, чем гомогенные. [c.22]

    Скорость гетерогенно-каталитического окисления углеводородов, идущего в кинетической области, определяется кинетическим уравнением w = ksRnnPo, (1 -Ь бРпр) где s — удельная площадь поверхности катализатора, Рпр — парциальное давление продукта. Какова роль продукта реакции в этом процессе Как влияет температура на скорость этого процесса  [c.127]

    В зависимости от агрегатного состояния катализатора и реагирующих веществ различают катализ гомогенный и гетерогенный. Примерами гомогенного катализа являются реакции окисления СО (в газовой фазе в присутствии паров воды) и Нг50з (в растворе в присутствии растворенных оксидов азота) кислородом, а также действие разнообразных ферментов в биологических процессах. Гетерогенно-каталитическими являются процессы синтеза аммиака (катализатор железо), окисления ЗОг до ЗОз (катализатор платина или оксид ванадия) и т. д. [c.224]

    В настоящее время возможность возникновения изотермических осцилляций в концентрации интермедиантов и, как следствие, в скорости реакций хорошо известна и для многих гетерогенных каталитических реакций. Наиболее изученными примерами являются окисление Н2 и СО кислородом на многих нанесенных благородных металлах, а также на индивидуальных кристаллофа-фических фанях монокристаллов этих же металлов (рис. 18.13). [c.390]

    Окисление формальдегида в сточных водах продуктами гетерогенно-каталитического распада пероксида водорода Цепь работы экспериментальное определение кинетических характеристик катализаторов ( Pt/С, Р<кУ С, Р + Ро1/С ) и процентов конверсии HJO до НСООН и СО в процессе каталитического распада . Расчет кинетических характеристик этого фоцесса [c.102]


Библиография для Окисление гетерогенно-каталитическое: [c.234]   
Смотреть страницы где упоминается термин Окисление гетерогенно-каталитическое: [c.175]    [c.62]   
Катализ и ингибирование химических реакций (1966) -- [ c.0 ]

Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.401 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитическое окислени



© 2025 chem21.info Реклама на сайте