Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды слм окисление

    Наличие в молекуле спирта гидроксильной группы (—ОН) обусловливает заметное уменьшение прочности соседних связей С—Н. Ввиду этого спирты окисляются гораздо легче соответствующих углеводородов. Окисление их идет, например, по схеме [c.539]

    Отсюда следует, что с увеличением избытка углеводорода выход продуктов конденсации повышается. Однако количество углеводорода, окисленного за один проход через печь, при этом уменьшается вследствие малого содержания кислорода в газовой смеси, количество альдегидов, кислот и кетонов изменяется лишь незначительно, выход спиртов сильно возрастает. В практике концентрация кислорода в газе составляет 4—5%. [c.150]


    НИЗКОТЕМПЕРАТУРНОЕ КИСЛЕНИЕ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ, ОКИСЛЕНИЕ ТВЕРДОГО ПАРАФИНА [c.270]

    Атомный кислород и озон (последний со значительно меньшей скоростью) реагируют с различными углеводородами. Окисленные соединения и свободные радикалы реагируют затем с оксидом азота с образованием дополнительного количества диоксида азота. В результате этого уменьшается доля оксида азота, вступающая в реакцию с озоном, вследствие чего содержание озона возрастает. [c.33]

    Приведенная радикально-цепная схема наиболее полно объясняет особенности процесса аутоокисления углеводородов (наличие индукционного периода, аутокаталитический характер, высокую чувствительность к следам посторонних примесей) и удовлетворительно согласуется с обширными экспериментальными данными. Большинство опубликованных в литературе данных относится к окислению индивидуальных углеводородов. Окисление же таких сложных многокомпонентных систем, какими являются бензины, изучено мало. [c.223]

    Протекают и другие реакции. В кислых газах содержатся углеводороды, окисление которых дает СО и СОг. Важнейшие реакции углеводородов (метана), СО и СОг в процессе Клауса следующие  [c.352]

    Переработка углеводородов окислением кислородом или кислородом воздуха является одним из наиболее рентабельных способов использования указанного сырья. Поэтому реакция окисления углеводородов газообразных и жидких явилась предметом всестороннего изучения как в Советском Союзе (С. С. Медведев, И. Л. Семенов, К. И. Иванов и др.)> так и за рубежом. [c.497]

    Каталитический крекинг, дегидрирование углеводородов, окисление углевода род<ю, синтез углеводородов из СО и Н , окислительный аммонолиз пропилена с получением акрилонитрила [c.133]

    Большая часть работ С. С. Наметкина посвящена химии и технологии нефти. Он разработал ряд проблем химии нефти (каталитическая ароматизация нефтяных фракций, синтез хлорпроизводных и спиртов на основе нефтяных углеводородов, окисление парафинов в спирты и альдегиды, получение моющих средств и др.), составил руководство по химии нефти. [c.560]

    Такими свойствами обладала борная, кислота. В зону реакции ее вводили в количестве 4—5 вес. % от загрузки колонны в виде суспензии с окисляемыми углеводородами. Окисление нормальных алканов продолжалось 2—4 ч при 165—175° С. Воздух в зону реакции поступал через перфорированную пластину в количестве 500— 1000 л/ кг-ч). Изменение в широком диапазоне количества пропускаемого через реакционную массу воздуха существенно не влияло на характеристику продуктов окисления, поскольку весовая концентрация кислорода в воздухе оставалась в зоне реакции постоянной. [c.293]


    В настоящее время известно пять различных промышленных процессов химической переработки парафиновых углеводородов окисление, сульфохлорирование, сульфоокисление, хлорирование, нитрование. Все перечисленные процессы химической переработки парафиновых углеводородов используют на различных стадиях производства синтетических жирозаменителей, поверхностно-активных веществ и моющих средств. [c.7]

    В промышленности уксусную кислоту получают из ацетилена через уксусный альдегид (см. реакцию Кучерова) окислением предельных углеводородов окислением этилового спирта. [c.344]

    Из распространенных ныне в промышленной практике твердых катализаторов первой, по-видимому, была открыта и получила широкое применение металлическая платина. В первой четверти-прошлого века открыто ускоряющее действие платины в реакциях разложения пероксида водорода, окисления водорода, оксида углерода и углеводородов, окисления спирта в уксусную кислоту. В 1831 г. Филлипс запатентовал применение платины для окисления диоксида серы. Однако резкое снижение активности платины [c.8]

    Кислотно-основные катализаторы, не имеющие в своем составе атомов илн ионов переходных металлов, в том числе и благородных, представляют интерес для промьшшенной реализации, например в процессах селективного гидрирования углеводородов, окисления различных веществ и в др. Преимущества таких катализаторов состоят как раз в отсутствии в их составе благородных металлов, а следовательно, и в их возможной нечувствительности к типичным ядам для металлических катализаторов, например к сернистым соединениям. Дальнейшие исследования в зтом направлении покажут, в какой степени оправданы зти прогнозы. [c.134]

    В процессе сгорания сульфидов образуется некоторое количество ЗОз (вследствие дальнейшего окисления образовавшейся ЗО2). Выход ЗОз быстро уменьшается с увеличением температуры и становится < 5% при 1200° С. Однако и малые количества ЗОз приводят к уменьшению содержания 3 в ЗО2, так как 3 концентрируется в 303. Ошибка становится несущественной, если сульфид серебра окислять при 1350 С. Поэтому предварительно обезвоженный сульфид серебра в кварцевой лодочке быстро вводят в горячую зону трубки для сожжения с температурой 1350° С. Через трубку с определенной скоростью подают ток кислорода, очищенного от воды и углеводородов. Окисление продолжается 7—10 мин. Образующийся ЗО2 улавливают в двух ловушках, охлаждаемых жидким кислородом. От примеси Н2О и СО2 освобождаются с помощью дистилляции в вакууме при температуре сухого льда и плавленого пентана соответственно. Очищенную ЗО2 запаивают в ампулу и передают в масс-спектрометр для анализа. [c.154]

    При пиролизе алканов получают олефины, циклоалканы, ароматические углеводороды. Окисление углеводородов осуществляется с целью получения разнообразных продуктов органических кислот, спиртов, синтетических белков и других продуктов. [c.274]

    Реакторы данного типа, работающие в режиме смешения или вытеснения, широко применяются в таких многотоннажных процессах, как окислительный и высокотемпературный пиролиз метана с полз чением ацетилена, крекинг и пиролиз углеводородного сырья, деалкилирование ароматических углеводородов, окисление и нитрование низших парафинов, хлорирование метана, а также в процессах хлорирования в сочетании с расщеплением хлорпроизводных и др. [c.42]

    Единственным нафтеновым углеводородом, окисление которого проводится в промышленном масштабе, является циклогексан. Он легко взаимодействует с кислородом воздуха при 150—250° С в присутствии металлического катализатора ионного типа (ацетата кобальта), с хорошей селективностью образуя циклогексанол и циклогексанон в качестве промежуточных продуктов и адипино-вую кислоту — в качестве конечного продукта процесса. Неполное окисление циклогексана и метилциклогексана над пятиокисью ванадия ири 450—500° С позволяет получать малеиновую и глу-таровую кислоту [310, 311]. [c.586]

    Атомарный кислород и озон (последний со значительно мень-щими скоростями) реагируют с различными углеводородами. Окисленные соединения и свободные радикалы затем — с N0 [c.61]

    Сырье — жидкие парафины фракции 240—350° С — поступает в промежуточную емкость 1, где смешивается с продуктами, возвращаемыми на повторное окисление — нейтральным оксида-том и неомыляемыми. Полученная смесь подается в окислительную колонну 2, где в присутствии катализатора — нафтената марганца при температуре 120° С окисляется азотокислородной смесью с содержанием кислорода 4—5%. С верха колонны отводятся летучие продукты окисления вместе с парами реакционной воды и некоторой части увлеченных углеводородов. Окисленный продукт (кислый оксидат) из колонны 2 через воздухоотбойник 3 подается в холодильник 4, охлаждается до 50° С и направляется в экстракционную колонну 5, куда одновременно из емкости 9 подается метанольный раствор едкого натра. В процессе экстракции нейтрализованный оксидат разделяется на экстракт, содержащий основную массу спиртов и натриевых солей жирных кислот, и рафинат, состоящий преимущественно из непрореагировавших углеводородов. Рафинат собирается в емкости 6, откуда подается в колонну 7 для отпарки увлеченного метилового спирита. Пары метанола конденсируются в холодильнике 8 и поступают в приемник 9. Освобожденный от спирта рафинат направляется вновь в окислительную колонну. [c.173]


    Уже давно выдвигалось предположение о том, что диолефины играют очень важную роль в смолообразовании [55]. Сопряженные алифатические и циклические диолефины, которые присоединены к ароматическим кольцам, вероятно, очень активны [57, 58]. Несопряженные диолефины относительно стабильны [59], однако в размерах, зависящих от структуры, простые олефины также вступают в реакции смолообразования благодаря тому факту, что в смесях углеводородов окисление какого-либо активного компонента способствует окислению другого, который в условиях автоокисления сам по себе не мо кет прореагировать в сколько-нибудь заметных количествах [60]. Поэтому количество смолы в крекинг-дистиллятах будет значительно больше, чем это можно объяснить только наличием диолефинов. Некоторые предельные циклические углеводороды, такие, как 1,2-диметил-циклопентан и 1,2-диметилциклогексан, газообразным кислог родом окисляются медленно [28, 37—39]. При нагревании в атмосфере кислорода 1,1,3-триметилциклопентана (термический димер изобутилена) при 100° С и давлении кислорода около 9 кПсм образуется и выделяется значительное количество жидких смол. [c.77]

Рис. 44. С хома npnooim для идентифик ации аро Mai 11 ч еских углеводородов окислением. Рис. 44. С хома npnooim для идентифик ации аро Mai 11 ч еских углеводородов окислением.
    Большой практический интерес представляет процесс жиджэ-фазного окисления моноциклоалканов в присутствии борной кислоты, связывающей образующиеся спирты в борнокислые эфиры, устойчивые к дальнейшему окислению [71]. Этерифицирующие добавки — борную кислоту или борный ангидрид добавляют в реактор для окисления (5 % от массы окисляемого углеводорода). Окисление проводилось в реакторе барботажного типа азото-водород-ной смесью, содержащей 3,5—7,0 % кислорода при удельном расходе газовой смеси 500—1500 л/(кг-ч), 145—185°С в течение 3—4 ч. [c.218]

    Селективным окислением циклододекана в присутствии мета-борной кислоты или ее ангидрида в промышленности получают циклодо дека НОЛ и циклогексанол [32, 33]. Недостатком борной кислоты является необходимость использования сложного процесса для регенерации сухой кислоты. Поэтому предпочтительнее использование ее эфиров, растворимых в углеводородах. Окисление циклододекана осуществляют чистым кислородом или воздухом в течение 1 ч при 168 °С в присутствии борной кислоты, эфиров ме-таборной кислоты. В присутствии 12 % добавок возможно превращение 70—95 % циклододекана в циклододеканол и циклододе-канон. [c.329]

    На рис. 5.1 показана зависимость длительности индукционного периода окисления трансформаторного масла при одной и той же концентрации присадки от содержания в нем ароматических углеводородов. Окисление проводилось в аппарате, регистрирующем количество поглощаемого маслом кислорода при 130 °С в присугствии катализатора (медной проволоки) в количестве 1 см поверхности на 1 г масла с окисляющим газом (кислородом) в статических условиях. Происходящее при очистке нефтяных дистиллятов снижение содержания ароматических углеводородов, как и удаление неуглеводородных включений, повышает стабильность ингибированного ионолом трансформаторного масла. [c.239]

    Окисление нефтяных углеводородов окисление смесей ароматики с нафтенами // Нефтяное хозяйство, 1933, № 6,7,с. 102—105 (Крейн С. Э.). [c.46]

    Третьим олефиновым углеводородом, окисление которого подверглось изучению в работах Скирроу ссотр., явился гексен-1 [37]. Опыты проводились в статических условиях при / =263° С. Воспроизводимость достигалась после проведения нескольких предварительных опытов. [c.407]

    Спирт строения (СНд)2СН—СНз—СНа—СН ОН используйте для получения углеводородов 4-метил-1-пен-тпна и 4-метил-2-пентина. Докажите строение углеводородов окислением. [c.60]

    Функциопализация углеводородов (окисление, галогенирование, гидроформилирование, гидратация, алкоголиз). [c.355]

    К этому классу ТЭ относятся также элементы, в которых электролитом служит 85%-ный раствор Н3РО4, адсорбированный пористыми платиновыми электродами и пористой прокладкой. В качестве топлива используют водород, пары спирта и некоторые углеводороды. Окисление осуществляется кислородом при 150—200°С. [c.286]

    Быстрый теми внедрения в промышленность нового способа получения нитрила акриловой кислоты (НАК) каталитическим окислительным ам-мополизом пропилена нуждается в разработке математического описания синтеза для оптимального проектирования и управления производством. Помимо этого, математическая модель получения НАК может быть полезна при изучении близких процессов, таких как окислительный аммоно-лиз углеводородов, окисление пропилена в акролеин на аналогичных катализаторах. [c.97]

    ТОРИЯ ДИОКСИД ТЬОг, пл 3350 °с, i 4400 °С не раств. в воде и р-рах щелочей. Получ. при сгорании Th прокаливание кислородсодержащих соед. Th. Примен. для получ. Th огнеупорный материал кат. крекинга и гидрирования углеводородов, окисления компонент несиликатного оптич. стекла для торирования катодов электровакуумных приборов и стабилизации нитей ламп накаливания. [c.585]

    Среди сложных р-ций широко распространены цепные р-ции, при к-рых образующийся в системе аггивный центр (своб. атом, радикал, ион, ион-радикал) вызьшает циклически повторяющуюся цепочку превращений реагентов в продукты. В сложном цепном процессе выделяют стадии зарождения, продолжения, разветвления и обрыва цеш . Различают р-ции неразветвлеиные, разветвленные, с энергетич. разветвлением и вырожденно-разветвленные. По цепному механизму протекает распад мн. молекул, в т. ч. крекинг углеводородов, окисление орг. соед. молекулярным кислвродом, радикальная и ионная полимеризации, хлорирование, бромирование, сульфохлорирование и т. п. [c.382]

    К.о. образуется при восстановлении ЗЮз кремнием. С, Н2, углеводородами, окислении Si при недостатке Oj, диссоциации SiO, выше 1800°С. Газообразный К.о обнаружен в газопылевых облаках межзвездных сред, на солис-чпых пятнах, в разреженных пламенах моносилана с О,, в продуктах взаимод. паров Si с N O. [c.519]

    Р-ции в жидких неводных системах, напр, пиролиз и окисление углеводородов, окисление альдегидов и спиртов, алкилирование ароматич. соед., получение тиоамидов и тио-карбаматов, синтез металлоорг. соед., восстановление гидридами, металлами, амальгамами, р-ции обмена галогенпроиз-водных, циклоприсоединение, получение и р-ции перфторал-кильных соед., карбеновые синтезы, димеризация, олигомеризация и полимеризация галогенсиланов и галоген-станнанов, диссоциация карбонилов металлов и замещение лигандов в комплексных соед., синтез нитрилов, альдольная коцденсация кетонов, конденсация Клайзена-Шмидта, пере-фуппировка Клайзена и др. [c.34]

    В реальных условиях окислительного декарбоксилирования кроме основного процесса возможно протекание ряда побочных процессов простого декарбоксилирования кислот с образованием углеводородов, окисления алкильных групп алкилкарбоновых кислот с образованием оксикислот, дикарбоновых кислот, сложных эфиров образования смолистых продуктов. Кроме того, по данным Кэдинга [82], возможно окисление фенола с образованием [c.158]


Смотреть страницы где упоминается термин Углеводороды слм окисление: [c.75]    [c.185]    [c.76]    [c.397]    [c.32]    [c.31]    [c.100]    [c.273]   
Методы эксперимента в органической химии (1968) -- [ c.2 , c.2 , c.8 , c.9 , c.285 , c.297 ]




ПОИСК







© 2025 chem21.info Реклама на сайте