Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомолитическое

    В противоположность этому для термического крекинга характерно свободнорадикальное гомолитическое расщепление связи С—С  [c.114]

    Гетеролитический распад происходит тем легче, чем больше электрическая асимметрия разрываемой связи. Гомолитический разрыв ковалентных связей в растворах наблюдается только в том случае, если растворитель имеет небольшую диэлектрическую проницаемость, когда реагирующие связи мало полярны (например, С—С, С—Н, С—Ы). При сильно полярных связях, таких, как О—Н, N—Н, С—С1, обычно наблюдается гетеролитический распад, даже если растворитель имеет низкую диэлектрическую проницаемость. [c.84]


    Гомолитическое и гетеролитическое направление в каталитическом распаде гидропероксидов [c.193]

    При высоких температурах происходит гомолитическое расщепление углерод-углеродной связи в углеводородах с образованием свободных радикалов  [c.217]

    Гомолитический распад гидропероксидов [c.92]

    В техническом катализе (например, в процессах каталитического риформинга и гидрокрекинга) нашли широкое применение бифункциональные катализаторы, состоящие из носителя кислотного типа (окись алюминия, алюмосиликаты, промотированные галоидами, цеолитом и др.) с нанесенным на него ме таллом — катализатором гомолитических реакций (Pt, Pd, Со, Ni, Mo и др.). [c.81]

    Процесс каталитического риформинга осуществляют на бифункциональных катализаторах, сочетающих кислотную и гидрирующую — дегидрирующую функции. Гомолитические реакции гид — рнрования и дегидрирования протекают на металлических центрах njvaxHHbi или платины, промотированной добавками рения, иридия, OjvOBa, галлия, германия идр., тонкодиспергированных на носителе. [c.180]

    Таким образом, параллельное протекание гетеролитического и гомолитического распада гидропероксидов под действием се-ро- и фосфорсодержащих соединений — широко распространенное явление. Гидропероксид окисляет в таких соединениях атом (S или Р), имеющий неподеленную пару р-электронов. Это создает предпосылку для протекания термохимически выгодных экзотермических реакций типа [c.124]

    По гомолитическому, преимущественно так называемому элек — тронь ому, катализу протекают реакции окислительно — восстано— вительного типа (такой катализ поэтому часто называют окисли — тельнэ —восстановительным) гидрирования, дегидрирования, гид — рогенолиза гетероорганических соединений нефти, оки(1 ения и восст 1новления в производстве элементной серы, паровой конвер — сии углеводородов в производстве водорода, гидрировании окиси углерода до метана и др. [c.81]

    Аналогичные нестабильные комплексы, содержащие водород, были постулированы во всех случаях, когда газообразный Нг активируется ионными растворами. Эта активация влечет за собой диссоциацию Нг (гетеролитическую или гомолитическую). [c.99]

    Свойства и реакции раликалов. Радикалы, имеющие неспа — ренные (свободные) электроны, образуются при гомолитическом распаде углеводородов преимущественно путем разрыва менее прочной С —С —связи —> 2 СН3, а также С — Н — связи С Нд —> Н- + С Н .. [c.24]

    Гомолитический распад молекул энергетически значительно выгоднее, чем гетеролитическнй с образованием заряженных ионов. [c.24]

    По природе промежуточного химического взаимодействия реагирующих веществ и катализатора катализ принято подразделять на следующие 3 класса 1) гомолитический катализ, когда химическое взаимодействие протекает по гомолитическому механизму 2) гетеролитическнй катализ — в случае гетеролитической природы промежуточного взаимодействия 3) бифункциональный (сложный катализ, включающий оба типа химического взаимодей — ствия. [c.80]


    На основании многочисленных исследований механизма и кинетики (с использованием кинетических, адсорбционных, изо — тспных и других методов) установлено, что в процессе ПКК углеводородов протекают 2 типа гомолитических реакций через хемо — сорбцию реактантов на поверхности катализатора  [c.158]

    Молибден, вольфрам и их оксиды являются п-полупроводниками ( <ак и N1, Со, Р1 и Р(1). Их каталитическая активность по отношению к реакциям окисления —восстарювления обусловливается наличием на их поверхности свободных электронов, способствующих адсор — бции, хемосорбции, гомолитическому распаду органических молекул. Однако Мо и Ш значительно уступают по дегидро-гидрирующей активности N1, Со и особенно Р1 и Рс1. [c.208]

    Сочетание N1 или Со с Мо или Ш придает их смесям и сплавам бифункциональные свойства — способность осуществлетъ одновре — пенно и гомолитические, и гетеролитические реакции и, что особенно нажно, стойкость по отношению к отравляющему действию сернистых и азотистых соединений, содержащихся в нефтяном сырье. [c.208]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п — и р — прово — дикостями) они активны как в реакциях гидрирования-дегидри— рования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод — угл зродных связей. Поэтому для осуществления реакций крекинга углэводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно — ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмоси — ЛИР ате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводо — ро ов сырья, в то время как на цеолите — реакции последующего бо/ ее глубокого крекинга — с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отвести к полифункциональным. [c.227]

    Эластомеры можно разделить на две группы — пластицирую-щиеся и непластицирующиеся. В процессе переработки возможна как сдвиговая, так и термоокислительная пластикация полимеров. Большинство эластомеров при температуре переработки в течение коротких промежутков времени, соответствующих длительности технологических циклов , практически не изменяют своих основных показателей таким образом, пластикация обусловлена в основном возникновением высоких сдвиговых напряжений, приводящих к деформации валентных углов и гомолитическому распаду связей [8]. Этот механизм подтверждается тем, что в большинстве случаев интенсивность механодеструкции увеличивается при понижении температуры. Считается также, что следствием деформации может быть накопление потенциальной энергии и перевод цепи в активированное состояние, в котором повышается реакционная способность различных групп, в частности, скорость термоокислительной деструкции [9]. [c.76]

    Связь 51—С, менее прочная и менее полярная, чем связь 51—0, может при высоких температурах подвергаться гомолитическому расщеплению. Однако в силоксанах она более устойчива к действию свободных радикалов или уоблучения, чем менее полярная, хотя и более прочная (413 кДж/моль) связь С—Н в метильной группе. Благодаря своей полярности связь 51—С может расщепляться и гетеролитически, хотя она гораздо менее реакционноспособна, чем связь 51—О. Так, метилсилоксаны выделяют метан под действием концентрированного КОН при 200 °С или при нагревании с серной кислотой. Сравнительно легко расщепляется кислотами связь кремний — арил. К нуклеофильным реагентам она более устойчива, но расщепление ими сильно ускоряется при введении в ядро электроноакцепторных заместителей [3, с. 14]. [c.463]

    Полимеризация циклосило.ксанов осуществляется в присутствии каталитических количеств нуклеофильных или элек-трофильных реагентов в условиях, при которых они расщепляют только связи Si—О—Si и не затрагивают связи Si—С или какие-либо связи в органических радикалах. Ввиду устойчивости силоксановых связей к гомолитическому расщеплению и возможности побочных реакций в органическом обрамлении (см. стр. 463) радикальные инициаторы не применяются. [c.472]

    Связь между углеродом и фтором хотя и полярна, но мало поляризуема. Более того, по мере накопления атомов фтора в молекуле ее полярность уменьшается. Одновременно уменьшается длина связи С—F и увеличивается ее энергия [3—5]. Энергия связи С—F весьма велика (498 кДж/моль), и эта связь не рвется по гомолитическому механизму, не расщепляется кислородом при высокой температуре [6]. Единственным источником радикалов, инициирующих цепной деструктивный распад перфторнрованных углеводородов, является термический разрыв углерод-углеродной связи. [c.502]


    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Изложенные выше рассуждения и оценки позволяют однозначно понять, почему углеводороды окисляются по цепному радикальному механизму. Геометрия и прочность С—С- и С—Н-связей в углеводородах с одной стороны и триплетное состояние кислорода с другой препятствуют молекулярной реакции КН с О2. Высокий потенциал ионизации углеводородов, низкое сродство кислорода к электрону, ковалентный характер С—Н-связей и неполярный характер углеводородов как среды препятствуют ионному протеканию реакции окисления. Единственно возможной оказывается гомолитическая реакция КН с кислородом с образованием радикалов К. Несмотря на то что эта реакция эндотермична и протекает очень медленно (см. раздел Кинетика автоокисления углеводородов ), образующиеся радикалы К вызывают цепную реакцию окисления, которая протекает как последовательность многократно повторяющихся актов. Первичным молекулярным продуктом такой цепной реакции является гидропероксид, сравнительно легко распадающийся на свободные радикалы. Таким образом, причиной цепного автоинициированного механизма окисления углеводородов является ковалентный характер их С—Н-связей, высокая активность радикалов К по отношению к кислороду и КОг по отношению к КН, цикличность последовательных радикальных реакций [c.28]

    Третичные гндропероксиды распадаются преимущественно с образованием молекулярных продуктов с константой скорости км., которая в общем случае может быть суммой констант скорости гомолитического и гетеролитического распада. Кинетика накопления ROOH описывается в таких случаях уравнениями [c.49]

    В окисляющемся топливе гидропероксид распадается с образованием свободных радикалов (гомолитически) и молекулярных продуктов. Молекулярные продукты образуются, во-первых, за счет рекомбинации пары радикалов в клетке растворителя, и, во-вторых, по реакциям гетеролитического распада ROOH. Общая схема распада ROOH (без учета его бимолекулярного распада) имеет вид [c.70]

    От соотнощения удельных скоростей гомолитического и гетеролитического распада гидропероксида зависит окисляемость топлива при автоокислении. Факторы, способствующие повыще-нию скорости распада на молекулярные продукты, понижают окисляемость топлива. Для определения константы скорости распада гидропероксида на свободные радикалы измеряют любым из описанных выше методов и,- rooh при разных концентра- [c.70]

    Коэффициент скорости молекулярного распада непосредственно не измеряют. Его находят, измеряя скорость брутто- и гомолитического распада гидропероксида. Для определения константы скорости брутто-распада R00H fes изучают кинетику распада гндропероксида в среде нейтрального газа. Используют установку барботажного типа, описанную в предыдущем разделе. Топливо предварительно окисляют воздухом или кислородом до определенной глубины. Содержание гидропероксида в топливе измеряют иодометрически. По кинетическим кривым находят порядок реакции брутто-распада по ROOH. ks rooh рассчитывают по формулам или определяют графически [c.71]

    Усредненные значения коэффициентов скорости гомолитического распада ROOH равны [c.94]

    При мономолекулярном распаде гндропероксида эффективность инициирования е=/г,/2 2 лежит в пределах 0,4—0,8 и равна вероятности выхода радикалов из клетки в объем. Для гидропероксидов топлив е находится в пределах 0,04—0,06 (топливо Т-6) и 0,015—0,020 (топливо РТ), что на порядок ниже значений, характерных для клеточного эффекта. Следовательно, в топливах, наряду с гомолитическим, протекает интенсивное (в 10—30 раз более быстрое) гетеролитическое разложение гидропероксидов. [c.96]

    Диалкилдитиофосфаты и диалкилдитиокарбаматы металлов. Диалкилдитиофосфаты цинка, бария и других металлов энергично реагируют с гидропероксидами [229, 232, 233, 237], разрушая их как гетеролитически, так и гомолитически. Последнее обстоятельство — разложение гидропероксидов с образованием радикалов — объясняет, почему введение тиофосфата металла в начальный период стимулирует окисление углеводорода, например, тетралина [236]. [c.122]

    Конкуренция гетеро- и гомолитического распада. Поскольку окисление — цепная автоинициированная реакция, ее будут тормозить только такие антиоксиданты, которые разрушают гидропероксид преимущественно гетеролитически. Проведенное в последние годы исследование механизма реакций ингибиторов III группы с ROOH показало, что часто разрушение гидропероксида идет по двум параллельным направлениям происходит гетеролитическое разрушение с образованием молекулярных продуктов и гомолитическое — с образованием свободных радикалов. Фосфиты, например, окисляясь гидропероксидом до фосфатов, генерируют также свободные радикалы, однако с низкой эффективностью—10 —10 [253]. Такую величину эффективности инициирования нельзя объяснить клеточным эффектом, для которого характерны значения 0,6—0,2. Она свидетельствует о двух параллельных направлениях реакции [c.123]

    Примечательно, что в присутствии кислот ускоряется распад ROOH и на свободные радикалы [259, 260]. Катализаторами гетеролитического и сопутствующего ему гомолитического распада могут служить также кислоты Льюиса [261] и ионы щелочных и щелочноземельных элементов [262]. [c.125]

    Однако часто катализатор настолько активно разрушает гидропероксид, что быстро (за несколько минут) достигается квазистационарная его концентрация, и реакция протекает с постоянной (при постоянной i[RH]) скоростью. В условиях квазистационарности по концентрации ROOH скорости его образования и распада равны. Если катализатор вызывает только гомолитический распад ROOH, то в этом случае имеем [c.200]


Библиография для Гомолитическое: [c.260]   
Смотреть страницы где упоминается термин Гомолитическое: [c.81]    [c.7]    [c.155]    [c.176]    [c.131]    [c.463]    [c.123]    [c.124]    [c.124]    [c.125]    [c.193]    [c.195]    [c.211]    [c.226]    [c.317]   
Теоретические основы органической химии (1973) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте