Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление аммиака реакция

Рис. IX-1. Зависимость константы равновесия реакции окисления аммиака от температуры и давления Рис. IX-1. Зависимость <a href="/info/1427282">константы равновесия реакции окисления</a> аммиака от температуры и давления

    Пример < . Каталитическое окисление аммиака. Этой реакцией пользуются в производстве азотной кислоты (см. 143). Ее осуществляют при температуре около 750 °С. Схема реакции  [c.269]

    Катализ имеет огромное значение в технике и природе. Подбирая соответствующим образом катализаторы, можно осуществить процессы в желаемом направлении и с нужной скоростью. Область применения каталитических реакций в химической промышленности в настоящее время совершенно необозрима. Напомним лишь, что такие важные процессы, как производство серной кислоты, синтез аммиака, окисление аммиака до азотной кислоты и многие другие, являются каталитическими. [c.274]

Рис. У1П.4. Непрерьшпый процесс производства азотной кислоты, П Оз, окислением аммиака. Реакция протекает в три стадии Рис. У1П.4. Непрерьшпый <a href="/info/885221">процесс производства азотной кислоты</a>, П Оз, <a href="/info/6630">окислением аммиака</a>. <a href="/info/26766">Реакция протекает</a> в три стадии
    При контактном окислении аммиака реакция [c.119]

    Влияние температуры на процесс окисления аммиака. Реакция окисления аммиака на платиноидном катализаторе начинается при температуре 418 К, но протекает с малым выходом N0 и образованием элементарного азота. С повышением температуры содержание оксида (П)ЫО увеличивается и в интервале температур 1073— 1193 К выход N0 достигает 97,5—95 об.%. При повышении температуры реакции окисления аммиака с 923 К до 1173 К время конверсии уменьшается с 5-10 до 1,1 10" с. [c.23]

    Конверсия аммиака проводится при 890—900 °С. При этом выход оксида азота составляет до 96%. Тепло, выделяющееся в ходе реакции, используется в котле-утилизаторе 5 для получения перегретого пара под давление.м 13-10 Па. Далее нит-розные газы поступают в окислитель 6, где оксид азота окисляется до диоксида. Температура газов после окисления повышается до 300—310 °С, что позволяет использовать их для подогрева воздуха в подогревателе 7. В холодильнике 1 с охлаждением нитрозных газов идет конденсация водяных паров (образовавшихся при окислении аммиака), а также взаимодействие диоксида азота с парами с образованием азотной кислоты. На выходе из холодильника кислота отделяется от газов и поступает в абсорбционную колонну 2 на тарелку с кислотой той же концентрации, а газы идут в нижнюю часть колонны для абсорбции смесью воды и азотной кислоты. Продукционная кислота, полученная в колонне, содержит до 1 % растворенных оксидов азота, которые удаляются при продувке в отдувочной колонне 3. [c.212]


    Температурные условия окисления аммиака. Реакция окисления аммиака на платине начинается при 145 °С, но протекает с малым выходом N0 и образованием преимущественно азота. С повышением температуры увеличивается содержание окиси азота -в газе и уменьшается содержание азота. В интервале 700—1000 °С выход N0 может быть доведен до 95—98%. [c.361]

    Активность катализатора определяет собой степень ускорения данной реакции по сравнению с протеканием ее без катализатора при тех же условиях. Так, например, скорость окисления сернистого газа на платиновом катализаторе при / = 500—600° С увеличивается в сотни тысяч раз ( 10 раз) по сравнению со с1<оростью этого процесса, протекающего без катализатора, на ванадиевых — несколько меньше, а на железных—еще меньше реа.кция окисления аммиака до окиси азота без катализаторов ничтожно мала, в присутствии же платино-радиевых катализаторов она ускоряется в миллионы раз и заканчивается в десятитысячные доли секунды если реакция синтеза аммиака при 450° С и давлении 300—500 атм достигает равновесного состояния без катализатора через несколько часов, то в присутствии одних катализаторов при тех же условиях равновесие наступает через несколько минут, в присутствии других — через несколько секунд, в присутствии третьих процесс синтеза заканчивается и доли секунды. [c.230]

    Окисление аммиака — реакция необратимая, поэтому повышение давления смеси исходных веществ только увеличивает их концентрации (а следовательно, и количество окисляющегося ЫНз на 1 м сетки за сутки при той же скорости газа), тогда как выход почти не изменяется (96—97%). При давлении 8 ат приходится увеличивать число наложенных друг на друга сеток до 16—20 н повышать температуру сеток до 900° С. Однако потеря платины (в процентах от ее начального веса) возрастает при этом в 3—4 раза. [c.76]

    Найти константу равновесия реакции окисления аммиака [c.214]

    К процессам, избирательность которых не зависит или слабо зависит от температуры в широких пределах ее изменения, относятся некоторые экзотермические реакции, протекающие во внешнедиффузионной области, например, реакции окисления аммиака в азотную кислоту, метанола в формальдегид и др. В процессах этого рода на поверхности зерен катализатора автоматически устанавливается температура адиабатического разогрева (см. раздел 111.3) адиабатический режим становится при этом не только рациональным, но и единственно возможным. [c.264]

    Наблюдаемые зависимости удовлетворительно объясняются следующими предположениями о сущности каталитического окисления аммиака реакция идет в сторону образования окиси азота при взаимодействии молекул аммиака с адсорбированным на поверхности катализатора кислородом, находящимся в активном состоянии образующийся активный комплекс, в состав которого входят аммиак и кислород, способен быстро окисляться кислородом до окиси азота и воды элементарный азот образуется в результате каталитического разложения аммиака. [c.350]

    Сложные реакции, так же как и простые, могут быть необратимыми и обратимыми. Так, окисление аммиака — реакция практически необратимая, а синтез метанола — обратимая. [c.30]

    Определите константу равновесия Кр при 1000 К реакции окисление аммиака  [c.247]

    ЩИХ технику реакций в нужном направлении и при условиях, наиболее приемлемых для заводских масштабов. Такие важнейшие процессы химической технологии, как синтез н окисление аммиака, контактное получение серной кислоты и многие другие, всецело основаны на результатах физико-химического изучения этих реакций. Велико и постоянно возрастает значение физикохимических исследований в развитии химической промышленности (основной органический синтез, нефтехимия, производство пластических масс и химического волокна и др.). Важную роль играют физико-химические исследования и для многих других, отраслей народного хозяйства (металлургии, нефтяной промышленности, производства строительных материалов, сельского хозяйства), а также для медицины и др. [c.13]

    Контактное окисление аммиака — процесс экзотермический. В зависимости от условий между аммиаком и кислородом могут протекать следующие реакции  [c.100]

    Рассмотрим экзотермическую реакцию газа на твердой по верхности. Это может быть реакция, в которой твердое вещество действует как катализатор (например, окисление аммиака на платине), или оно является реагентом, образуя новую твердую фазу или газообразные продукты. Хорошо известными примерами могут служить горение углерода, восстановление окислов железа в доменной печи по реакции [c.169]

    Составьте уравнение вида g Кр = f (Т) для реакции окисления аммиака [c.280]

    Высота слоя катализатора в емкостном контактном аппарате определяется кинетическими параметрами процесса с учетом гидродинамики потока. Наиболее тонкий слой становится двумерным и может заменяться сеткой из каталитического материала. Это имеет место при проведении весьма быстрых реакций во внешнедиффузионной области, например при окислении аммиака до окислов азота. [c.265]


    Реакторы с катализатором в очень тонком слое в виде металлических сит используют для проведения реакций, протекающих с большой скоростью определяющим этапом процесса в этом случае является диффузия. В промышленности реакторы такого типа применяют для окисления аммиака, производства азотной кислоты, формальдегида и т. д. [c.301]

    Определение активности и селективности катализатора целесообразнее проводить в отсутствие искажающего влияния процессов массо- и теплопереноса. Исключение составляют реакции, идущие Б промышленных условиях во внешнедиффузионной области (например, окисление аммиака). [c.400]

    Так как на основании приближенного расчета было установлено, что в условиях промышленного процесса количество реагирующего аммиака на 20—60% больше, чем могло пройти к поверхности катализатора, предполагается, что реакция окисления аммиака относится к типу реакций, которые начинаются на поверхности катализатора, но развиваются после этого в газовой фазе по цепному механизму. Таким образом, можно доказать, что действительное количество реагирующего аммиака больше, чем количество аммиака, проходящего из газовой фазы к поверхности катализатора. [c.303]

    Считают, что общие потери аммиака в процессе окисления определяются реакцией [c.307]

    Одной из характерных особенностей окислительных процессов является широкое разнообразие их технологических характеристик. Они различны с точки зрения термодинамических характеристик. Например, окисление сернистого газа и хлористого водорода осуществляют в условиях, близких к термодинамическому равновесию, когда скорость обратной реакции значительна, а окисление аммиака и метанола, получение акрилонитрила окислительным аммонолизом практически необратимы. [c.137]

    Трифторид азота NF3 в обычных условиях — бесцветный газ (т. кип. —129°С, т. пл. —209°С). Получают его при окислении аммиака фтором. Молекула NF3 имеет пирамидальное строение ( nf = = 0,137 нм, - FNF = 102°). В отличие от H3N электрический момент диполя NF3 (с, 84) очень мал (всего 0,07 Кл м). Электроно-доно1)ных свойств NF3 практически не проявляет. По отношению к нагр( ванию и различным химическим воздействиям трифторид весьма усто11чив, вступает в реакции только выше 100°С. В воде он практически нерастворим, гидролиз начинает протекать лишь при пропускании элек рической искры через смесь его с водяным паром. [c.353]

    Окисление аммиака до элементарного азота, глубокое окисление метанола до СО2, наличие побочных реакций при окислении нафталина и в процессе окислительного аммонолиза пропилена предъявляют довольно жесткие требования к технологическому режиму процесса. Все перечисленные факторы и обусловливают температурный режим окислительных процессов. Очевидно, для экзотермических процессов, протекающих вблизи термодинамического равновесия (окисление SOg, H l и др.), надо добиваться понижения температуры с увеличением степени превращения. Для процессов во внешнедиффузионной области (нанример, окисление СНдОН) желателен режим, близкий к изотермическому, особенно для избирательного катализа, при котором отклонение температуры на 10—20 град от заданной (нанример, нри синтезе высших спиртов) приводит к резкому возрастанию скорости побочных реакций или к снижению скорости основной. Очень часто термостойкость продуктов реакции диктует условия температурного режима. [c.138]

    Примером затухания реакции из-за наличия геплопроводно-сти в обратном направлении могут служить некоторые типы каталитических реакций и пламенное горение. Рассмотрим окисление аммиака или метанола, которое осуществляют пропусканием паро-воздушной с.меси через слои платиновой или серебряной сетки соответственно. В обоих процессах теплопроводность катализатора обусловливает обратную передачу тепла, и в них обоих существует два стационарных со стояния — желательное, при почти полном иревращении, когда катализатор нагрет до красного каления, и нежелательное, когда конверсия близка к нулю, а. катализатор холодный. Для достижения верхнего стационарного состояния катализатор должен быть предварительно подогрет (например, с помощью горелки). Это состояние поддерживается до тех пор, пока катализатор остается активным (обычно к этому и стремятся). Подобные случаи подробно рассмотрены [c.164]

    При окислении аммиака возможны следующие реакции  [c.156]

    При окислении аммиака на железохромовом катализаторе при отсутствии внешне- и внутридиффузионного торможения необходимо различать две характерные области [47—49]. В первой из них, характеризующейся большим избытком кислорода в аммиачно-воздушной смеси, по сравнению со стехиометрическим, расходуемым по реакции (а), степень окисления аммиака не зависит от мольного отношения кислорода к аммиаку. Во второй области, характеризующейся малым избытком кислорода, степень окисления аммиака является функцией мольного отношения кислорода к аммиаку. Граница между этими областями явно проявляется при мольном отношении кислорода к аммиаку в аммиачно-воздушной смеси, равном А [c.158]

    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов прн высоких температурах (выше 900°С) окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до оксида азота, т. е. селективность процесса, достигает 98%. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до оксида азота, могут служить платина и ее сплавы с металлами платиновой группы, оксиды железа, марганца, кобальта и др. До [c.100]

    Из рассмотрения реакций (6) —(21) следует, что гидразин может быть продуктом окисления аммиака. Реакция восстановления гидразина до аммиака имеет высокий положительный потенциал и термодинамически вполне вероятна. С точки зрения термодинамики возможно получение гидразина путем восстановления кислородных соединений азота. Также видно, что восстановительная способность гидразина возрастает с увеличением pH среды. Кроме реакций (6) — (21) при окислении гидразина возможны другие процессы. На основании данных об энтальпии и энтропии азотводородов, азота и водорода можно в первом приближении оценить потенциалы окисления гидразина с образованием гидразил- и диимид-радикалов  [c.29]

    Процесс фирмы Е. I. du Pont de Nemours. В данном случае пропилен вступает в реакцию с окисью азота, которую получают в результате частичного окисления аммиака воздухом. Получаемая при этом смесь, состоящая из 15% окиси азота и 83—84% азота, употребляется для реакции с пропиленом. В результате образуется акрилонитрил. Процесс можно рассматривать как двухступенчатый вариант метода аммонокисления. [c.121]

    Газ, образовавшийся при окислении аммиака объемом 11,2 л (при н. у.), в присутствии катализатора продолжает окисляться. Полученное вещество растворяют в воде объемом 73 мл (в присутствии кислорода). Определить массовую долю IINO3 в продукте реакции. [c.165]

    Реакторы для производства синильной кислоты. Синильную кислоту получают путем пропускания смеси метана, воздуха и аммиака через катализатор в форме платиновых сит при температуре 1020° С (способ Андрусова). Недавно было установлено, что механизм этой реакции идентичен механизму реакции окисления аммиака в окись азота. [c.309]

    Пример 12. При окислении аммиака после конвертора ни-трозные газы имели следующий состав (в объемн. %) 9,0% N0, 7,0% О2, 70,0% N2, 14,0% Н2О. Подсчитать, какую температуру имеют эти газы после реакции окисления NHз, если последняя идет по уравнению  [c.146]

    ЗОг), при синтезе аммиака (конвертор Фаузера — Монтекатини— рис. 1Х-55, в котором вода под давлением 300 ат движется в замкнутом цикле и отдает теплоту воде, кипящей в котле), при каталитическом окислении аммиака до окиси азота (рис. 1Х-56), при сжигании сероводорода по методу Клауса и т. д. Такой способ приводит не только к рациональному использованию тепловой энергии, но в некоторых случаях и к наиболее выгодному для повышения выхода реакции распределению температур (синтез МНз, сгорание [c.402]

    Азотная кислота получается преимущественно окислением аммиака в присутствии катализатора из сплава 90% платины и 10% родия в виде 20 слоев сеток (с размером отверстий 0,175 мм), изготовленных из проволоки толщиной 0,076 мм. Эта сетка имеет металлическую поверхность 1,5 м /м . В качестве катализатора используют также гранулированную смесь окиси железа и окиси висмута. В платиновый конвертор, работающий при давлении 7 кгс/см , при суточной производительности 55 т 100%-ной HNOз загружают 2977 г сплава. После зажигания реакция протекает автотермично путем соответствующего предварительного подогрева газовой смеси поддерживается температура 882—910 °С. При этих условиях время реакции составляет примерно 0,0001 сек, тогда как при атмосферном давлении требуется от 0,01 до 0,02 сек. Кислород адсорбируется на поверхности катализатора и реагирует с аммиаком, который диффундирует к поверхности. Скоростью диффузии аммиака определяется общая скорость процесса . [c.326]

    В качестве примеров гетерогсиио-каталитических реакций можно указать на окисление диоксчда серы в триоксид при кон-laKTHOM методе производсгва се , Пой кислоты, синтез аммиака, окисление аммиака при производстве азотной киелоты. [c.180]

    Промышленное получение азотной кислоты. Современные промышленные способы получения азотной кислоты основаны на каталитическом окнсле]]ии аммиака кислородом воздуха. При описании свойств аммиака (см. 137) было указано, что он горит Б кислороде, причем продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определенном составе смеси происходит почти полное превращение N113 в N0  [c.415]

    Соотношение (1.11) было использовано для приближенной оценки области протекания ряда промышленно важных реакций. Расчеты показали, что внеш недиффузи0 ннык транспорт существенно тор мозит окисление аммиака и метанола. Разумеется, эти расчеты являются приближенными, так как величины у в промышленных реакто рах меняются вдоль слоя катализатора поэтому расчет по средним величинам становится несколько неопределенным и для выявления роли процессов транспорта требуются специальные исследо(вания. [c.11]

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, науки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением ЗОг воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотонкажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рз смотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

    Володин Ю, E., Барелко В. В. Нестационарные явления в реакции окисления аммиака на платине и гипотеза о разветвленно-цеыном механизме//Ма-териалы Второй Всесоюзной конференции по кинетике каталитических реакций. Кинетика-2 , Ч. I, Новосибирск Ин-т катализа СО АН СССР, 1975,— С, 21-28, [c.27]


Смотреть страницы где упоминается термин Окисление аммиака реакция: [c.247]    [c.294]    [c.403]    [c.13]    [c.267]    [c.101]   
История химии (1975) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак окисление

Окисление окисление аммиака

Реакции окисления



© 2025 chem21.info Реклама на сайте