Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гриньяра реактивы, присоединение к карбонильным соединениям

    Реакции нуклеофильного присоединения. Реактивы Гриньяра способны взаимодействовать как нуклеофилы с карбонильными соединениями. Поскольку на атоме углерода в карбонильных соединениях имеется дефицит электронной плотности, реактив Гриньяра легко атакует его, образуя новую углерод-углеродную связь. Так, при взаимодействии с формальдегидом образуется первичный спирт, с остальными альдегидами — вторичные спирты, а с кетонами — третичные спирты [c.234]


    Т. II. В результате восстановления под действием реактива Гриньяра из карбонильного соединения получается спирт (реакция 16-26), сам реактив Гриньяра при этом в результате элиминирования образует олефин. Две другие побочные реакции — конденсация (между енолят-ионом и избытком кетона) и сочетание ио типу реакции Вюрца (т. 2, реакция 10-93). Такие сильно затрудненные третичные спирты, как триизопропил-карбинол, три-грет-бутилкарбинол и диизопропилнеопентилкар-бинол, не удается получить при присоединении реактивов Гриньяра к кетонам (либо реакция дает чрезвычайно малые выходы), так как значительную роль начинают играть процессы восстановления и (или) енолизации [311]. Однако такие спирты можно синтезировать с помощью алкиллитиевых реагентов при —80 °С [312], так как в этих условиях енолизация и восстановление существенно менее значительны [313]. Для повышения доли присоединения за счет восстановления можно использовать и другие методы, которые состоят в получении комплексов реактива Гриньяра с Li l04 или Bu4N+Br- [314] или в применении в качестве растворителя вместо эфира бензола или толуола [315]. [c.368]

    Одно из наиболее важных различий в реакционной способности литийорганических реагентов и реактивов Гриньяра заключается в разном направлении присоединения их к -непредельным карбонильным соединениям. Первые взаимодействуют почти исключительно с карбонильной группой, давая продукты 1,2-присоединения, в то время как реактив Гриньяра имеет тенденцию к сопряженному 1,4-присоединению  [c.242]

    Восстановление наиболее вероятно в тех случаях, когда как карбонильное соединение, так и реактив Гриньяра имеют сильно разветвленную цепь. Альдегиды обычно дают нормальные продукты присоединения, если оба реагента не разветвлены [57]. Хлорангидриды в зависимости от степени разветвленности могут давать альдегиды, кетоны, первичные, вторичные или третичные спирты [58] ниже приведена схема возможных превращений. Возможно, что так же как и в реакциях, обсуждавшихся выше, восстановление проходит через стадию координации атома магния с кислородом, за которой следует перемещение гидрид-иона [c.315]

    Другие металлоорганические соединения используются для органического синтеза значительно реже, чем реактивы Гриньяра. Органические соединения металлов, расположенных в периодической системе рядом с магнием, по своим химическим свойствам аналогичны реактивам Гриньяра. Литийорганические соединения несколько более реакционноспособны по сравнению с реактивом Гриньяра и успешно применяются в некоторых реакциях, когда реактив Гриньяра или не вступает в реакцию, или дает низкие выходы (особенно при присоединении к пространственно затрудненным карбонильным соединениям). Применение натрий- и калийорганических соединений весьма ограниченно. Кадмийорганические соединения несколько менее реакционноспособны, чем реактивы Гриньяра, и их применяют тогда, когда хотят избежать продуктов присоединения по двойным углерод-кислородным связям  [c.168]


    Выход продукта восстановления можно снизить, если в реакционную смесь предварительно ввести эквимольное количество безводного бромида магния. Как было упомянуто выше, на атоме магния в этой соли имеется больший, по сравнению с реактивом Гриньяра, дефицит электронной плотности, так как атом магния в этом соединении обеими валентностями связан с более электроотрицательными, чем атом углерода, атомами брома. Поэтому он более прочно, чем реактив Гриньяра, координируется по атому кислорода карбонильной группы, ограничивая возможность гидридного перехода от -углеродного атома радикала )еактива Гриньяра к атому углерода карбонильной группы формула (36)], и тем самым повышает выход продукта нуклеофильного присоединения. [c.283]

    Присоединение также превалирует над карбонильным в случаях алкил-и арилпроизводных кадмия [125], бериллия и марганца [126], в то время как употребление более реакционноспособных металлорганических соединений калия и кальция почти всегда приводит к карбонильному присоединению [126]. Производные натрия и. лития дают в основном продукты карбонильного присоединения, хотя реактив Гриньяра с теми же самыми алкенами образует продукты а, р-присоединения [127-129]. [c.285]

    Этоксиацетилен кипит при 51° С, а в ИК-спектре его имеется характерная полоса при 2150 см . При 0° С он устойчив в течение длительного времени. При действии магнийэтилбромида в эфире он дает реактив Гриньяра, концентрированный раствор которого легко получить, добавляя бензол. При комнатной температуре полученный реактив Гриньяра присоединяется к карбонильным соединениям. Реакция имеет большое практическое значение. В случае альдегидов лучше использовать литиевое производное в эфире или натрийэток- сиацетиленид в аммиаке, так как бромистый магний катализирует присоединение альдегида к продукту реакции (стр. 29) (см. задачу 2, в). Одним из примеров реакций этоксиацетилена является синтез цитраля  [c.70]

    Реакции нуклеофильного присоединения. Реактивы Гриньяра способны взаимодействовать как нуклеофилы с карбонильными соединениями. Поскольку на атоме углерода в карбонильном соединении имеется значительный дефицит электронной плотности, обусловленный различием в электроотрицательности атомов углерода и кислорода и поляри.чуемостью кратной связи, реактив Гриньяра легко атакует его как нуклеофил, образуя новую углерод-углеродную связь. Так, при взаимодействии с формальдегидом и последующем гидролизе образуются первичные спирты, с остальными альдегидами — вторичные, а с кетонами — третичные спирты  [c.277]

    Путем классификации и анализа огромного количества данных и фактов, накопленных более чем за 100 лет, механизмы обычных органических реакций в настоящее время четко установлены. Эти реакции обычно классифицируют как ионные, радикальные или молекулярные, хотя существует и более детальная классификация. Механизмы многих реакций с участием соединений непереходных металлов совершенно понятны, в то время как механизмы органических реакций с участием комплексов переходных металлов до сих пор не ясны. Без сомнения, эти реакции протекают путем образования о-связи металл — углерод, однако химические свойства этих связей остаются непонятными. Поэтому для более ясного понимания реакций, протекающих с использованием комплексов переходных металлов, вначале стоит проанализировать и сравнить их с реакциями реактивов Гриньяра, которые очень хорошо знакомы химикам-органикам. Известно, что первая стадия реакций Гриньяра состоит во взаимодействии металлического магния с ал-килгалогенидами с образованием алкилмагнийгалогени-дов, такшазываемых реактивов Гриньяра. В этой реакции нульвалентный магний окисляется до двухвалентного и происходит расщепление ковалентной связи углерод — галоген, следовательно, эту стадию можно рассматривать как окислительное присоединение алкилга-логенидов к металлическому магнию. Полученный таким способом реактив Гриньяра является источником карб-аниона и реагирует с различными электрофильными реагентами, например карбонильными соединениями или нитрилами. Эту стадию можно формально представить как реакцию внедрения ненасыщенной связи карбонильной группы по связи магний — углерод. В последнем процессе не изменяется степень окисления магния. Таким образом, реакцию Гриньяра можно представить [c.14]


Смотреть страницы где упоминается термин Гриньяра реактивы, присоединение к карбонильным соединениям: [c.246]   
Теоретические основы органической химии (1973) -- [ c.843 , c.847 ]




ПОИСК





Смотрите так же термины и статьи:

Гриньяр

Гриньяра реактивы

Гриньяра соединения

Гриньяров реактив

Карбонильная реактивом Гриньяра

Карбонильные соединения

Карбонильные соединения реактивы

Присоединение соединений Гриньяра



© 2025 chem21.info Реклама на сайте