Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование водородных связей магния

    Пектиновые вещества. Так называют соединения полисахаридного характера, содержащиеся в соках различных плодов (груш, яблок, лимонов), ягод, а также овощей (моркови, свеклы и др.). Основной составной частью пектиновых веществ является полига-лактуроновая (пектовая) кислота — полисахарид, образованный звеньями а-пиранозной формы галактуроновой кислоты (стр. 239), соединенными а-1,4-гликозидной связы . Водородные атомы гидроксильных групп этих звеньев могут быть частично замещены метильными группами, а карбоксильных — ионами кальция или магния. В продуктах гидролиза пектиновых веществ всегда находится га-лактуроновая кислота. [c.268]


    Исследования ПМР также могут дать информацию о влиянии различных ионов на возникновение или разрущение структуры растворителя [147, 196, 255]. Например, исследование спектров ПМР метанольных растворов перхлоратов магния, цинка и алюминия четко свидетельствуют о влиянии катионов на растворитель [66]. В случае солей с различными анионами из данных спектров ПМР можно определить различную способность анионов к образованию водородных связей. Особенно наглядно это сделано при ПМР-исследовании растворов галогенидов в диметилформамиде. [c.121]

    В последнее время О. М. Оранской и мною было исследовано взаимодействие молекул ацетона и пиридина со структурными гидроксилами окислов циркония, титана и магния. При адсорбции ацетона и пиридина на двуокиси циркония (см. рис. 10) высокочастотная полоса ОН-групп при 3750 см уменьшается и в спектре появляется широкая полоса возмущенных гидроксилов в области 3700—2500 см и полосы СН-групп адсорбированных молекул около 3000 см . В случае ацетона максимум полосы возмущенных ОН-групп лежит при 3550 в случае пиридина он попадает в область 3100—2800 смГ и положение его трудно определить из-за наложения полосы СН-групп пиридина. Откачка при 120° С недостаточна для восстановления полосы 3750 что указывает на образование прочной водородной связи между группами 2г — ОН и адсорбированными молекулами. Откачка при 250° С приводит к постепенному уменьшению полосы возмущенных ОН-групп и росту полосы 3750 сл .  [c.127]

    Это —немногие примеры, которые позволяют использовать сведения, представленные в таблицах различных каталитических реакций органических и неорганических соединений для анализов и сравнений. Катализаторы можно классифицировать также по присущим им функциям, т. е. как вещества, способствующие ослаблению связей, и как вещества, образующие промежуточные продукты присоединения. Первоначальные изменения, вызываемые хлористым алюминием, например в углеводородах, могут сводиться к активации водородных атомов, ведущей в некоторых случаях к ослаблению связей. Активация водородных связей проявляется при гидрогенизации и дегидрогенизации, а также конденсации в ароматическом ряду и в реакциях крекинга и обмена. Миграция галоидных атомов в углеродных цепях и циклах под влиянием хлористого алюминия наблюдается при реакциях изомеризации. Окись магния и титана, глины и некоторые природные земли способствуют разрыву углерод—углеродной связи. Наиболее типичные катализаторы для реакций галоидирования — это вещества, обычно применяемые в качестве носителей при реакциях в паровой фазе. Некоторые катализаторы способны к образованию двойных солей с реагирующими веществами в этом случае стабильность промежуточных продуктов определяет их каталитическое действие. [c.4]


    Фактором, сдерживающим широкое применение магнитной обработки воды, является отсутствие строгой теории процесса, что не позволяет заранее планировать условия и эффект обработки. Воздействие магнитного поля на воду связывается с тем, что часть молекул воды, совершающих беспрерывное колебательное движение, входит с ним в резонанс. Это сопровождается возникновением квантов энергии, вызывающих нарушение водородных связей, что ведет к изменению структуры воды. Исследования показали, что на свойства омагниченной воды влияют ионы растворенных веществ. Наибольший эффект магнитной обработки воды проявляется в кальциево-карбонатных водах, при этом важную роль играет содержание диоксида углерода, растворенного в воде, который способствует образованию пересыщенных растворов карбонатов кальция и магния. Эффективность процесса зависит от напряженности магнитного ноля, скорости протекания воды, химического состава и концентраций примесей. [c.97]

    Взаимодействие между ионом металла и донорным атомом кислорода молекулы растворителя было доказано при исследовании ацетоновых растворов перхлоратов серебра [350], лития и магния [334]. В случае иодидов соответствующих металлов расщепление С —Н-колебаний метильных групп молекул растворителя позволило даже выявить образование очень слабых водородных связей между иодид-ионом и ацетоном [334]. [c.110]

    Аналогичные различия между составом и устойчивостью аддуктов с аммиаком элементов А- и Б-подгрупп существуют и во И группе периодической системы. Магний образует ряд аддуктов с аммиаком, однако у щелочноземельных металлов тенденция к образованию таких аддуктов очень быстро угасает. Например, СаС12-8ЫНз легко теряет аммиак. Степень гидратации солей также уменьшается от кальция к барию, за исключением октагидратов пероксидов и гидроксидов (ЗгОг-вНгО, Ва(ОН)2-8 Н2О), устойчивость которых, по-видимому, объясняется образованием водородных связей между ионами Ог или 0Н и молекулами воды. Однако во П Б-подгруппе периодической системы, как и в I Б-подгруппе, структуры аддуктов с аммиаком и гидратов не связаны друг с другом. Например, известны [c.436]

    В р-рах П.с. образуются при наличии полидентатных лигандов и избытка ионов металлов. Поскольку образующиеся из молекулы воды лиганды полидентатны (ОН-бидентатный и О - тридентатный), то в водных р-рах солей металлов всегда имеет место в той или иной степени полиядерное комплексообразование, усиливающееся также благодаря образованию мостиковых водородных связей. Для идентификации и изучения П.с. в р-рах используют спектрофотометршо, разл. варианты радиоспектроскопии, в т. ч. ядерную магн. релаксацию. [c.53]

    Образование хелатного комплекса характерно для сорбентов, имеющих при атоме металла свободную гидроксильную группу. Этот тип связи могут образовывать именно те вещества, которые образуют внутримолекулярные водородные связи. Этот тип связи может возникнуть не только при использовании окиси алюминия, но и окиси железа, или гидроокиси магния, особенно при хроматографировании соединений типа а- и р-аминоспиртов, а- и Р оксиальдегидов или кетонов, о-аминофенола, о-оксибензойной кислоты и т. д. В зависимости от характера субстрата перечисленные соединения образуют либо хелат (при этом заметно увеличивается взаимодействие между сорбентом и веществом), либо снова внутримолекулярную водородную связь (при этом взаимодействие между веществом и сорбентом заметно ослабевает. Этим обстоятельством объясняется, например, тот факт, что некоторые из перечисленных типов соединений при хроматографировании на окиси алюминия имеют меньшую величину Яр, чем их изомеры, тогда как при проведении анализа на бумаге или силикагеле наблюдается обратная картина. [c.27]

    При растворении электролитов в воде наблюдается явление электро-стрикции — кулоновские поля образующихся в растворе ионов взаимодействуют с диполями молекул воды достаточно сильно, вследствие чего вблизи ионов происходит сжатие растворителя, это подтверждается измерениями скорости ультразвука в таких водных системах. Структура воды при этом заметно искажается находящимися в ней ионами ионы небольшого размера помещаются в пустотах надмолекулярных образований, ионы средних размеров (например, одновалентные ионы щелочных металлов и ионы двухвалентного бериллия) имеют координационное число, равное четырем, и, очевидно, замещают молекулы воды в структурных узлах. Гидратированные ионы двухвалентных кальция и магния и трехвалентного алюминия могут быть представлены в виде октаэдров, в центре которых находятся ионы этих металлов, электростатически связанные с шестью молекулами воды, расположенными в их вершинах. Эти шесть молекул воды и составляют первую координационную сферу гидратированных многозарядных катионов. Отмеченное ион-дипольное взаимодействие наиболее характерно для гидратации катионов, при гидратации анионов со значительным зарядом или малым радиусом типично присоединение молекул воды за счет водородных связей. [c.143]


    Химические факторы, определяющие скорость и направление реакций органических фосфатов, связаны главным образом с расположением гидроксильной или фосфатной группы (или других функциональных групп) субстрата относительно реагирующей части органического фосфата, присутствием или отсутствием основных катализаторов и распределением заряда в ангидриде или эфире. Химически распределение зарядов может быть изменено рядом способов, таких, как подавление диссоциации фосфатных групп при образовании эфира или проведение реакции в кислой среде (например, катализируемые протонами взаимопревращения нуклеозид-2 - и нуклеозид-З -фосфатов и нуклеозид-2 - и нуклеозид-3 -алкилфосфатов, которое не наблюдается в щелочной среде) и образование смешанных ангидридов из кислот, сила которых несоизмерима с силой фосфорной кислоты. Для неферментативных химических реакций также наблюдались каталитические и направляющие эффекты, возникающие в результате образования комплексов с ионами некоторых поливалентных металлов. В биохимических реакциях аналогичный контроль может осуществляться с полющью таких факторов, как конформация нуклеозид-5 -полифосфатов, связывание субстрата и фермента через металл, связывание диссоциирующих групп фермента с группой Р = О водородными связями, что эквивалентно протонированию. (С точки зрения резонансных форм фосфатов, разница между группами Р = О и Р — носит чистоформальный характер.) Образование катнон-субстратных комплексов, таких, как комплекс АТФ с магнием, по-видимому, увеличивает электрофильный характер атомов фосфора (препятствуя ионизации) и почти наверняка приводит к такому смещению электронной плотности, которое облегчает атаку данного атома фосфора, зависящую от определенной стереохимической конфигурации комплекса. В фермент-металл-субстратных комплексах, в которых металл служит ю тикoм между ферментом и субстратом, свободная энергия активации, по-видимому, значительно снижена. [c.350]

    Отчетливой границы между указанными группами нет, имеются элементы с промежуточным типом связи. Между ионными и металлическими находится группа лантаноидов, которая образует водородные соединения с металлическим типом связи до состава МеНа и с ионным — в области состава МеНа-з. В какой-то степени эти свойства предполагаются у гидридов иттрия и актиноидов. Гидрид магння является промежуточным между соединениями с ионными н ковалентными связями. Гидриды подгрупп бора н цинка представляют собой полимерные соединения с ковалентным типом связи, а соединения подгруппы меди с водородом — типичные переходные соединения от металлических к ковалентным. В молекулах соединений неметаллов VII группы с водородом уже есть определенная доля ионной связи [4]. А. Ф. Жигач и Д. С. Стаспневич [4] водородные соединения элементов 1—111В подгрупп выделяют в отдельную группу, основным признаком которой авторы считают существование водородных мостиковых связей. Последние служат причиной образования димеров молекул этих соедииеиий. Одиако, по мнению авторов, эта группа является переходной между ковалентными и металлическими водородными соединениями. [c.5]

    СЛОИСТАЯ СТРУКТУРА - кристаллическая структура, состоящая из слоев, в которых атомы связаны друг с другом сильнее, чем атомы какого-либо слоя с атомами соседнего. В С. с. слой представляет собой плоскую сетку (структуры графита), пакет, составленный из небольшого числа сеток (напр., структуры йодистого кадмия, гидроокиси магния, молибденита) или более сложные образования (напр., структуры гипса, слюды, талька, каолинита). Связь внутри слоя — ковалентная или ионная, между атомами соседних слоев — ван-дер-ваальсова, металлическая или водородная. Вещество со С. с. может быть полиморфной [c.406]


Смотреть страницы где упоминается термин Образование водородных связей магния: [c.141]    [c.356]    [c.200]    [c.252]    [c.262]    [c.214]    [c.31]    [c.573]    [c.592]    [c.600]    [c.149]    [c.344]    [c.346]    [c.347]    [c.129]    [c.39]    [c.180]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте