Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственные затруднения в присоединении к карбонильным соединениям

    Другие металлоорганические соединения используются для органического синтеза значительно реже, чем реактивы Гриньяра. Органические соединения металлов, расположенных в периодической системе рядом с магнием, по своим химическим свойствам аналогичны реактивам Гриньяра. Литийорганические соединения несколько более реакционноспособны по сравнению с реактивом Гриньяра и успешно применяются в некоторых реакциях, когда реактив Гриньяра или не вступает в реакцию, или дает низкие выходы (особенно при присоединении к пространственно затрудненным карбонильным соединениям). Применение натрий- и калийорганических соединений весьма ограниченно. Кадмийорганические соединения несколько менее реакционноспособны, чем реактивы Гриньяра, и их применяют тогда, когда хотят избежать продуктов присоединения по двойным углерод-кислородным связям  [c.168]


    Сочетание атома металла с кислородом карбонильной группы, показанное на примере только что приведенной реакции восстановления, несомненно, фигурирует также в процессах присоединения и енолизации. Как правило, низкие температуры реакции и замена реактивов Гриньяра литийорганическими соединениями способствуют процессу присоединения, а не енолизации и восстановления. Пространственные затруднения как в карбонильном, так и в металлоорганическом соединении снижают выход продукта присоединения. [c.297]

    ВОССТАНОВЛЕНИЕ АЦИКЛИЧЕСКИХ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ. Продукты, возникающие при кинетически контролируемом нуклеофильном присоединении к кетону, содержащему хиральный центр рядом с карбонильной группой, можно предсказать, пользуясь так называемым правилом Крама. С этой целью рисуют кетон в проекции Ньюмена, помещая атом кислорода карбонильной группы между малым и средним по размеру заместителями при хиральном центре. Нуклеофил изображают атакующим с наименее пространственно затрудненной стороны карбонильной группы. 13 качестве примера ниже показано применение правила Крама для восстановления З-фенил-2-пентанона. [c.33]

    Общие реакции ароматических кетонов сходны с реакциями алифатических кетонов, за исключением того, что ароматическое ядро, как и в ароматических альдегидах, уменьшает дефицит электронов на карбонильном углеродном атоме, в результате чего карбонильная группа становится гораздо менее чувствительной к нуклеофильной атаке. Карбонильная группа ароматических кетонов, особенно диарилкетонов, является более пространственно затрудненной, чем карбонильная группа алифатических кетонов, что еще больше понижает ее реакционную способность по отношению к нуклеофилам. Действительно, 2,6-дизамещенные арилке-тоны, которые очень сильно затруднены, иногда атакуются предпочтительно в ароматическое ядро (см. разд. 5.4.4.1). Существенным фактором является перекрывание я-орбиталей карбонильной группы и ароматического кольца, в результате чего нуклеофильное присоединение к карбонильной группе термодинамически менее выгодно для ароматических, нежели для алифатических карбонильных соединений, в силу большей потери резонансной энергии в процессе превращения тригонального атома углерода в тетраэдрический центр. Однако во многих конденсациях, где двойная связь в конечном счете образуется в две стадии как результат присоединения и последующей дегидратации, процесс в целом может быть экзотермичным, и в подходящих условиях реакции удается довести до конца. [c.765]


    На последней стадии основной катализатор регенерируется. Все стадии суммарной последовательности обратимы, но для альдегидов и большинства пространственно не затрудненных кетонов образование циангидрина оказывается более предпочтительным. При практическом проведении синтезов циангидринов удобно добавлять сильную кислоту к смеси цианистого натрия и карбонильного соединения, так что цианистый водород образуется in situ. Количество добавляемой кислоты должно быть недостаточным для связывания всех цианид-ионов — этим обеспечивается поддержание щелочности, необходимой для быстрого присоединения. [c.477]

    Ограниченность рассмотренных квантовохимических подходов состоит в том, что они не учитывают многих чрезвычайно важных факторов, зачастую определяющих и направление, и скорость реакции. Таковыми, например, являются влияние растворителя, пространственные эффекты заместителей и др. О пространственных эффектах заместителей мы уже говорили при рассмотрении кислотно-основных свойств оснований. Отметим еще несколько примеров подобного влияния. Из данных по конформации нуклеозидов и нуклеотидов (см. гл. 2) следует, в частности, что для этих соединений в обычных условиях предпочтительной является антиконформация, при которой в пиримидиновых нуклеозидах и нуклеотидах остаток рибозы и карбонильная группа находятся по разные стороны от К-гликозидной связи. Если эта конформация сохраняет свое преимущество и в растворе, то можно ожидать, что остаток сахара будет пространственно затруднять нуклеофильное присоединение по двойной связи, вследствие чего реакции подобного рода с объемистыми реагентами могут стать даже невозможными. Не исключено, например, что такие реагенты, как семи-карбазид или реактив Жирара (см. стр. 350), не присоединяются по двойной связи именно в силу пространственных затруднений. Более трудная фотохимическая гидратация двойной связи в ури-дин-5 -фосфате по сравнению с уридин-З -фосфатом, возможно, также связана с пространственными эффектами (см. гл. 12). Несмотря на эти довольно многочисленные факты, детального исследования пространственного влияния остатка сахара на реакционную способность оснований до сих пор еще нет. [c.203]

    Пространственные затруднения для создания циклического переходного состояния с двумя молекулами реактива Гриньяра могут быть вызваны также и строением карбонильного соединения. Ацетофенон при действии метилмагнийиодида енолизуется лишь на 2,5% (измерено по образованию метана) две о-метильные группы в 2,6-диметилацетофеноне полностью подавляют нормальное присоединение по Гриньяру и приводят исключительно к образованию енола [281]. [c.378]

    Хинолы и их эфиры. Соединения этой группы более устойчивы по сравнению с другими функциональными гел-замещенными циклогексадиенонами. Основные свойства данного класса веществ хорощо изучены на примерах простейших соединений, не относящихся к типу пространственно-затрудненных циклогексадиенонов Особенно большой вклад в развитие химии хинолов и их уксуснокислых эфиров (хинолацетатов) внес Ф. Вессели Однако химические свойства пространственно-затрудненных хинолов и их производных несколько отличаются от свойств простейших хинолов. Так, если для последних в присутствии кислот характерна типичная диенон-фенольная перегруппировка с перемещением гидроксильной или сложноэфирной группы, то пространственно-затрудненные хинолы в этих условиях обычно либо устойчивы, либо отщепляют геминальный алкильный заместитель, причем особенно легко — трег-алкильную группу При восстановлении хинолов, их простых и сложных эфиров алюмогидридом лития, цинком в уксусной или в соляной кислотах с хорошими выходами получаются соответствующие 2,4,6-триалкилфенолы. Специфично взаимодействуют пространственно-затрудненные хинолы и их простые эфиры с алкил (фенил) литиемВ этой реакции происходит присоединение реагента как по двойной углерод-углеродной связи, так и по карбонильной группе, с последующим перемещением алкильного заместителя (в кислой среде)  [c.218]

    При действии реактива Гриньяра на 4-окси-3,5-диалкилбенз-альдегиды и другие карбонильные соединения, содержащие пространственно-затрудненную гидроксильную группу, первоначально происходит образование магниевых солей по фенольному гидроксилу. Большинство этих солей нерастворимо в эфире и других органических растворителях. Поэтому даже в избытке реагента присоединение магнийорганического соединения По карбонильной группе подобных веществ происходит очень медленно. Более легко аналогичная реакция протекает с соответствующими хинобромистыми соединениями (см. также гл. 8)  [c.273]


    В табл. 2 приводятся сравнительные данные, показывающие, в какой степени при обработке фторированных карбонильных соединений этилмагнийгалогенидом протекают обе возможные реакции — присоединение и восстановление. Высокая степень восстановления, обусловливаемая этим реагентом, необычна, так как в случае нефторированных карбонильных соединений он проявляет восстанавливающие свойства лишь при наличии значительных пространственных затруднений. [c.245]

    Следует отметить, что ацетилирование динуклеотидов не сопровождается значительным разрывом межнуклеотидных связей. Это легко объяснить, исходя из свойств ангидридов уксусной кислоты и диалкил(или диарил)фосфатов. Такие соединения ведут себя исключительно как ацилирующие, но не фосфорилирующие агенты, особенно при применяемых условиях (при наличии пространственно затрудненного третичного амина и в отсутствие катализа пиридином). Такая направленность реакции объясняется тенденцией к замещению более устойчивого фосфатного аниона (р/С — 1 по сравнению с рД—4,5для карбоксильной группы). Ацети-лирующее действие подчеркивается способностью карбонильной группы к реакциям присоединения. Аналогично специфическое действие хлоругольного эфира на динуклеотиды приводит к сохранению исходного динуклеотида, содержащего, однако, концевую 2, 3 -циклическую фосфатную группу. Такое течение реакции является результатом избирательности нуклеофильной атаки хлор- [c.500]


Смотреть страницы где упоминается термин Пространственные затруднения в присоединении к карбонильным соединениям: [c.260]    [c.161]    [c.23]    [c.515]    [c.248]    [c.75]    [c.197]    [c.353]   
Органическая химия (1964) -- [ c.288 , c.289 ]

Органическая химия (1964) -- [ c.288 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения



© 2025 chem21.info Реклама на сайте