Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефицит электронный

    При реакциях нуклеофильного замещения в алифатическом ряду происходит взаимодействие органических соединений субстратов), у которых имеется дефицит электронной плотности на ато-.Vie углерода, связанном с электроноакцепторной группой X, с органическими или неорганическими соединениями или анионами, Y или Y (нуклеофильными реагентами), в состав которых входят один или несколько атомов с неподеленными парами электронов на внешней оболочке. [c.96]


    В вертикальных рядах элементов, принадлежащих к одной и той же группе, нуклеофильная реакционная способность возрастает с увеличением атомной массы. Так, из галогенов (элементы Vil группы) наибольшей нуклеофильной силой обладает иод. Несмотря на то что заряд ядра атома иода (53) намного больше, чем заряд ядра атома фтора (9), определяющие нуклео фильные свойства неподеленные пары электронов у иода находятся на большем расстоянии от ядра, и притяжение их к ядру значительно ослаблено экранирующим действием электронов заполненных внутренних оболочек. Это обусловливает большую поляризуемость внешних неподеленных пар, что облегчает взаимодействие их с атомом углерода, имеющим дефицит электронной плотности, и позволяет образовывать связь на больших межъядерных расстояниях. Таким образом, у галогенид-ионов нуклеофильная сила уменьшается п ряду  [c.101]

    В ВНз атом бора имеет на внешней электронной оболочке только секстет электронов. Вследствие тенденции к достройке внешней электронной оболочки до октета атом бора в ВНз обладает электрофильными свойствами. (Кстати, этим же объясняется тот факт, что в обычных условиях ВНз существует в виде диборана.) Кроме того, следует принять во внимание и то, что бор, хотя и не намного, менее электроотрицателен, чем водород, и поэтому на атоме бора в ВНз имеется дефицит электронной плотности. [c.24]

    В настоящее время от такой интерпретации механизма реакции отказались. Во-первых, в хлорноватистой кислоте дефицит электронной плотности имеется не только на атоме хлора, но и в еще большей степени на атоме водорода, а в водном растворе эта кислота диссоциирует, причем в анионе 0С1 атом хлора не должен проявлять электрофильных свойств  [c.22]

    В простых эфирах дефицит электронной плотности на атоме углерода, непосредственно связанном с атомом кислорода, меньше, чем в алкилгалогенидах, поэтому реактивы Гриньяра очень. медленно и лишь при температурах выше 200 °С реагируют с некоторыми простыми эфирами. Фактически известны лишь единичные случаи такого взаимодействия. Например, при 200—220 °С метилмагнийбромид расщепляет связь О—СНз в анизоле (выход этана 85%)  [c.272]

    Известно, что вицинальные диолы (36) из-за дефицита электронной плотности на соседних атомах углерода способны легко расщепляться при действии даже таких мягких окислителей, как НЮ, и тетраацетат свинца. Структура озонида (28) аналогична вицинальным диолам с той только разницей, что на атоме углерода, связанном с оксониевым кислородом, дефицит электронной плотности еще больше, чем в вицинальных диолах. [c.28]


    Галогениды фосфора не являются протонными кислотами, однако на входящем в них атоме фосфора имеется значительный дефицит электронной плотности, поскольку электроотрицательность фосфора (2,1) существенно меньше, чем электроотрицательность галогенов. [c.142]

    Одним из имеющих большое значение видов межмолекулярного взаимодействия являются электронодонорно-акцепторные (ЭДА) взаимодействия, приводящие к образованию ЭДА-ком-плексов. Комплексы с переносом заряда (КПЗ) образуются в хемосорбционных процессах, а также при взаимодействии ПАВ-доноров, роль которых могут играть молекулы с неподе-ленными парами, т. е. с а- или л-связями, и веществ-акцепторов электронов с дефицитом электронов в каком-нибудь звене молекулы, например за счет сильных отрицательных (—Es) и (—Ed) эффектов, создающих дефицит электронов по кратной связи. В качестве таких акцепторов известны малеиновый ангидрид, сульфоны, ароматические нитросоединения, цианистые соединения и др. К комплексным соединениям относятся также сэндвичеобразные структуры. [c.204]

    Следует заметить, что при гидролизе бутен-2-илхлорида в условиях, благоприятствующих механизму 5ы2, аллильная перегруппировка все равно наблюдается, хотя причины, порождающие ее, несколько иные. В этом случае вследствие — /-эффекта атома галогена дефицит электронной плотности возникает не только на атоме С-1, непосредственно связанном с галогеном, но и на атоме С-3, входящем в винильную группу, вследствие легкой поляризуемости я-связи. Поэтому атака нуклеофильного реагента с приблизительно одинаковой степенью вероятности направляется как на атом С-1, так и на атом С-3. В первом случае по-видимому, реализуется линейное переходное состояние (34), которое не отличается от переходного состояния для реакций, протекающих по механизму 5к2, и образуется бу-тен-2-ол-1 (37). Во втором случае, по-видимому, может реализоваться как щестичленное циклическое переходное состояние (35) с синхронным перераспределением связей, так и линейное переходное состояние (36), что приводит к образованию изомерного продукта — бутен-1-ола-З (38). Таким образом, и в данном слу- [c.134]

    Электроотрицательность атома кислорода равна 3,5, а у хлора и брома она меньше и равна соответственно 3,0 и 2,8. Следовательно, дефицит электронной плотности на атоме углерода, связанном с группой ОН, должен был бы быть больше, чем на соответствующем атоме углерода в алкилгалогенидах. [c.139]

    Дефицит электронной плотности на а-атоме углерода в те талях, обусловленный — /-эффектом алкоксигрупп, не настолько велик, чтобы мог осуществиться щелочной гидролиз. [c.157]

    Вода реагирует с оксираном в присутствии не только кислых, но и щелочных катализаторов, В последнем случае реакция начинается с атаки анионом ОН одного из атомов углерода, имеющих дефицит электронной плотности, а образовавшийся при этом анион вырывает из воды протон, регенерируя ОН  [c.161]

    Карбонильные компоненты. Как уже отмечалось, скорость реакции конденсации тем выше, чем меньше электронная плотность на атоме углерода карбонильной группы. Дефицит электронной плотности уменьшается в ряду  [c.193]

    На первой стадии реакции происходит атака карбонильной группы этоксид-ионом (на нем дефицит электронной плотности больше, чем на атоме углерода этоксикарбонильной группы)  [c.251]

    Аналогичным образом изменяется и нуклеофильная реакционная способность, т. е. способность к образованию ковалентной связи с атомом углерода, имеющим дефицит электронной плотности. [c.262]

    Замещение при насыщенном атоме углерода. Как уже отмечалось выше (см. разд. 4.2). в молекуле реактива Гриньяра на атоме углерода, непосредственно связанном с магнием, создается избыточная электронная плотность, вследствие чего эти соединения способны к образованию ковалентной связи с атомами углерода, имеющими дефицит электронной плотности. [c.265]

    Образование алкена (12) не требует пояснений. Образование же изомера (13) можно объяснить, исходя из следующих соображений п-электронная плотность бутен-2-илхлорида смещена под влиянием сильного —/-эффекта галогена, и вследствие этого дефицит электронной плотности почти в равной степени рассредоточивается на атомах С-1 и С-3. Если при взаимодействии реализуется переходное состояние (14), то образуется алкен (13)  [c.270]

    Реакции кетонов. Поскольку дефицит электронной плотности на атоме углерода карбонильной группы кетонов меньше, чем у альдегидов, они не могут быть карбонильными компонентами при конденсации с альдегидами, взятыми в качестве метиленовых компонентов. Поэтому в данном разделе рассмотрены примеры реакций альдольно-кротоновой конденсации, в которых и карбонильный, и метиленовый компоненты— кетоны. [c.213]

    По мере увеличения числа алкоксигрупп при одном атоме углерода дефицит электронной плотности на нем возрастает, а следовательно, увеличивается склонность соединений к реакциям нуклеофильного замещения по механизму 5к2  [c.273]

    Магнийорганические соединения реагируют как нуклеофилы и с веществами, у которых дефицит электронной плотности находится не на атоме углерода, а на атомах других элементов. Например, при взаимодействии 0-алкилгидроксиламина, у которого на атоме азота есть некоторый дефицит электронной плотности, с избытком реактива Гриньяра наряду с другими соединениями образуется (после гидролиза) первичный амин (избыток реактива Гриньяра необходим потому, что он в первую очередь будет реагировать с группой ЫНг как основание)  [c.274]

    Реакции с галогенидами металлов. В безводных галогени-дах металлов, хотя они и не диссоциированы, на атоме металла существует значительный дефицит электронной плотности, поэтому реактивы Гриньяра взаимодействуют с ними как нуклеофилы, образуя металлорганические соединения  [c.275]


    При проведении реакции карбонильное соединение постепенно вводят к заранее приготовленному реактиву Гриньяра, и, следовательно, в реакционной массе всегда имеется избыток последнего, поэтому есть основания предполагать, что на первой стадии реакции взаимодействует димер реактива Гриньяра (см. разд. 4.2). С одной стороны, с атомом углерода карбонильной группы реагирует как нуклеофил один из радикалов К, а с другой — по атому кислорода этой же карбонильной группы, на котором сосредоточена избыточная электронная плотность, координируется атом магния, имеющий дефицит электронной плотности. Это приводит к дополнительному увеличению положительного заряда иа атакуемом атоме углерода карбонильной группы. [c.278]

    Выход продукта восстановления можно снизить, если в реакционную смесь предварительно ввести эквимольное количество безводного бромида магния. Как было упомянуто выше, на атоме магния в этой соли имеется больший, по сравнению с реактивом Гриньяра, дефицит электронной плотности, так как атом магния в этом соединении обеими валентностями связан с более электроотрицательными, чем атом углерода, атомами брома. Поэтому он более прочно, чем реактив Гриньяра, координируется по атому кислорода карбонильной группы, ограничивая возможность гидридного перехода от -углеродного атома радикала )еактива Гриньяра к атому углерода карбонильной группы формула (36)], и тем самым повышает выход продукта нуклеофильного присоединения. [c.283]

    В противоположность 1ЮННЫМ ковалентные тетрагидридобораты типа А1(ВН4)з (т. пл. —64,5°С, т. кип. 44,5°С), Ве(ВН4)2 (т. возг. 91"С) летучи, легкоплавки. В этих гидридоборатах (поскольку имеется дефицит электронов) связь между внешней и внутренней сферами осуществляется за счет трехцентровых связей. Таким образом, эти соединения являются смешанными гидридами. В гидридоборатах же щелочных и щелочноземельных металлов (низкие энергии ионизации) дефицит электронов устраняется за счет перехода электронов атома 11еталла к радикалу ВН4, т. е. в этом случае связь между внешней и знутренней сферами становится преимущественно ионной  [c.444]

    Большое значение оказывают количество и активность катализатора, При небольших количествах катализатора и мягких условиях образуются в значительной,степени орто- и пара-то-меры. С увеличением количества катализатора возрастает содержание мета-томера. Кроме того, образование лега-изомера при мягких условиях наблюдается при высокой реакционной способности и низкой избирательности карбокатионов. В присутствии больших количеств катализатора ароматические углеводороды почти количественно превращаются в 1,3-диалкил- и 1,3,5-триалкилбензолы, что объясняется их большой основностью и соответственно стабильностью соответствующих сг-комплексов. Многочисленными примерами показано, что чем выше энергия у реагента (больше дефицит электронов), тем меньше его селективность как при атаке различных по основности ароматических углеводородов, так и отдельных положений монозамещенных ароматических соединений. Например, молекулярный бром (слабая кислота Льюиса) реагирует с толуолом в 600 раз быстрее, чем с бензолом, тогда как бром-катион из гипобромида (сильная кислота Льюиса) лишь в 36 раз. Подобный же эффект наблюдается для этих реагентов и при атаке различных положений толуола. В табл. 2.4 приведены факторы парциальных скоростей нитрования и галогенированЕя толуола и трет-бутилбензола. [c.42]

    Атом бора имеет свободную орбиталь, поэтому в молекуле ВНз дефицит электронов. В молекуле же HдN при атоме азота имеется неподеленная (несвязывающая) электронная пара. Таким образом, молекула ВНз может выступать как акцептор, а молекула HзN, наоборот, как донор электронной пары. Иными словами, центральные атомы той и другой молекулы способны к образованию четвертой ковалентной связи по донорно-акцепторному механизму. [c.64]

    Поэтому дефицит электронной плотности на атоме углерода карбонильной группы в данном соединении ничем не погашается, и эта группа присутствует в кетене в чистом виде . Это обусловливает исключительно высокую активность кетенов при взаимодействии с нуклеофильными реагентами, по отношению к которым кетены являются ацилируюшими агентами  [c.92]

    По шкале электроотрицательности элементов Полинга углерод— более электроотрицательный элемент, чем магний (2,5 и 1,2 соответственно). По этой причине связь углерод—магний в магнийорганических соединениях поляризована так, что на атоме углерода появляется избыточная электронная плотность. Поэтому в соединениях RMgX радикал R имеет анионоидный характер. По разности электроотрицательностей углерода и магния вычислено, что степень ионности связи углерод—магний в реактивах Гриньяра составляет 35%. Связь магний—галоген из-за большей электроотрицательности галогена по сравнению с углеродом приближается к ионной. Таким образом, на атоме магния имеется значительный дефицит электронной плотности, что обусловливает, с одной стороны, способность молекулы реактива Гриньяра координироваться атомом магния с молекулами растворителей, обладающих нуклеофильными свойствами, а с другой — образрвыватгз димеры. [c.259]

    Нуклеофильная реакционная способность реагента. Под нуклеофильной реакционной способностью (нуклеофильной силой) принято понимать способность реагента (аниона или нейтральной молекулы) образовывать за счет неподелениой пары р-электронов одного из вход/ицих в него атомов ковалентную связь с имеющим дефицит электронной плотности атомом углерода в органической молекуле (субстрате). [c.100]

    Из анионов наиболее слабыми нуклеофилами являются га-логенид-ионы к тому же они способны создать наибольший дефицит электронной плотности на атакуемом атоме углерода субстрата. Поэтому реакции замещения атома галогена в гало-генпроизводных на нуклеофильные реагенты являются наиболее типичными примерами реакций нуклеофильного замещения в алифатическом ряду. [c.113]

    Поскольку поляризуемость л-связи значительно выше поляризуемости а-связи, на атоме углерода в таких группах имеется значительный дефицит электронной плотности. По этой причине нуклеофильное замеп1,ение атома галогена в а-галогенкетонах X H2 OR и эфирах а-галогенкислот X Hj OOR в условиях проведения реакции по механизму Sn2 протекает значительно легче, чем в алкилгалогенидах с тем же числом атомов углерода. [c.114]

    Как уже отмечалось выше, уходящие группы X по легкости замещения их на нуклеофильные реагенты можно расположить в следующий ряд Hal > ОН > NH2. Казалось бы, этот ряд можно было бы продолжить влево и дополнить группами, имеющими еще больший отрицательный индуктивный эффект, например NOj и N. В самом деле, имея на атоме, непосредственно связанном с остальной частью молекулы, шачительный положительный заряд, эти группы могли бы в еще большей степени увеличить дефицит электронной плотности на атакуемом атоме углерода и тем самым облегчить протекание реакции нуклеофильного замещения по механизму 5 2. Однако в действительности ни для нитрилов карбоновых кислот, ни для первичных и вторичных алифатических нитросоединений неизвестны случаи вытеснения анионов N или NO2, хотя вытеснение этих групп в виде анионов в условиях проведения реакций нуклеофильного замещения энергетически выгодно. [c.119]

    Существенное отличие групп NO2 и N от Hal, ОН и NHa заключается в знаке мезомерного эффекта. Ни атом азота нит-рогруппы, ни атом углерода группы N, которыми эти группы связаны с атакуемым атомом углерода, не имеют неподеленных нар электронов, обусловливающих появление -f/Vi-эффекта, но несмотря на это они прочно связаны с атомом углерода субстрата. В данном случае повышение прочности связи уходящей группы X с субстратом заключается в следующем. С одной стороны, вследствие высокой поляризуемости кратных связей, на атомах кислорода в группе NO2 и на атоме азота в группе GN сосредоточивается значительная избыточная электронная плотность. С другой стороны, на атоме азота в нитрогруппе имеется полный положительный заряд, а на атоме углерода в группе N — значительный дефицит электронной плотности, что вызывает поляризацию соседних связей С—Н и повышает склонность атомов водорода к отщеплению н виде протонов, причем [c.119]

    Известны две причины сравнительной инертности спиртов в реакциях нуклеофильного замещения. Во-первых, атом кислорода в спиртах, будучи двухковалентным, одновременно связан не только с атомом углерода алкильной группы, но и с менее электроотрицательным, чем углерод, атомом водорода. Поэтому дефицит электронной плотности в молекуле спирта имеется не в одном, а в двух местах, причем в большей степени на атоме водорода  [c.139]

    В ульдегпллх и котопах атом кислорода свя ан о- и л-связями с одним и тем же атомом углерода. Вследствие высокой иоля-ри. уемости л-свя.чь сильно смещена в направлении более электроотрицательного атома кислорода. Несмотря иа то что длины связей С—О и С —О равны соответственно 0,143 и 0,121 нм, дипольный момент (который, как известно, является произведением заряда на расстояние между разноименными зарядами) этилового спирта [>авен 1.70 Д, а у ацетальде1 нда он составляет 2,70 Д. Эти значения свидетельствуют о том, что на атоме углерода карбонильной группы имеется значительно больший дефицит электронной плотности, чем на атоме углерода, связанном с группой ОН в спиртах, и поэтому альдегиды и кетоны должны легче реагировать с нуклеофильными реагентами. Первой стадией таких реакций является присоединение нуклеофильного реагента по связи С = 0  [c.162]

    Характерным для рассматриваемых соединений является то, что на атоме углерода карбонильной группы пмеется значительный дефицит электронной плотности, обусловленный тем, что кислород является более электроотрицательным элементом, чем углероД( а л-связь легче поляризуется чем о связь. Было опре делено что дйпольНый момент этилового спирта, в котором имеется ординарная связь С—О, составляет 1,70 Д, а ацетальдегида— уже 2у70 Д, несмотря на то что кратная связь С = 0 коро-чё( чем ординарная (соответственно 0,121 и 0,143 нм), [c.184]

    Реакции нуклеофильного присоединения. Реактивы Гриньяра способны взаимодействовать как нуклеофилы с карбонильными соединениями. Поскольку на атоме углерода в карбонильном соединении имеется значительный дефицит электронной плотности, обусловленный различием в электроотрицательности атомов углерода и кислорода и поляри.чуемостью кратной связи, реактив Гриньяра легко атакует его как нуклеофил, образуя новую углерод-углеродную связь. Так, при взаимодействии с формальдегидом и последующем гидролизе образуются первичные спирты, с остальными альдегидами — вторичные, а с кетонами — третичные спирты  [c.277]

    Являясь более сильной кислотой Льюиса, чем магнийорганическое соединение, бромид магния прочно координируется по атому кислорода карбонильной группы при этом на атакуемом атоме углерода возникает больший дефицит электронной плотности. Молекула MgBra регенерируется после завершения одно- [c.279]


Смотреть страницы где упоминается термин Дефицит электронный: [c.68]    [c.207]    [c.275]    [c.102]    [c.103]    [c.116]    [c.142]    [c.147]    [c.168]    [c.168]    [c.175]    [c.192]    [c.195]   
Химические приложения топологии и теории графов (1987) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Бороводороды как полимеры с дефицитом электронов

Гидриды металлов как полимеры с дефицитом электронов

Дефицит

Другие структуры с электронным дефицитом

Критика понятия электронного дефицита

Металлоорганические соединения как полимеры с дефицитом электронов

Молекулы с дефицитом электронов ДМО и ЛМО

Молекулы с электронным дефицитом

Мостиковые карбониевые ионы с дефицитом электронов

О связях с избытком и дефицитом валентных электронов

Полимеризация молекул с дефицитом электронов

Полимеры с дефицитом электронов

Связи с дефицитом электронов, условия

Связи с дефицитом электронов, условия образования

Соединения с дефицитом электронов

Типы полимеров с дефицитом электронов

Химическая связь с дефицитом валентных электронов

Химия полимеров с дефицитом электронов

Электронная структура молекул с дефицитом электронов



© 2025 chem21.info Реклама на сайте