Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ гетерогенно-гомогенный координационно-комплексный

    Классификация каталитических реакций. Катализ делят на гомогенный и гетерогенный. Гомогенный катализ можно разделить на кислотно-основной (его вызывают кислоты и основания), окислительно-восстановительный (его вызывают соединения металлов переменной валентности), координационный (катализаторы — комплексные соединения), гомогенный газофазный (катализаторы — химически активные газы, такие, как N62, ВГз и т. д.) и ферментативный. Деление это не строго, так как одна и та же реакция, например гидролиз сложного эфира, может в зависимости от катализатора— кислоты, комплекса или фермента — попасть в ту или иную группу, [c.169]


    Имеются интересные наблюдения по влиянию типичных лигандных соединений на гетерогенный катализ [70]. Применение квантовохимической теории химических связей в комплексных соединениях качественно подвело теоретические основания под наличие общих механизмов. Но здесь, по-видимому, имеют место слишком большая схематизация явлений и игнорирование специфики, имеющейся в гетерогенном и гомогенном катализе. Если раньше переоценивали эту специфику и считали гетерогенный газовый катализ и гомогенный катализ в растворах принципиально различными по механизму, то здесь часто имеет место другая крайность игнорирования специфических различий между этими двумя типами катализа. Между тем эта специфика имеется. Можно назвать установленные точно различия в активности и селективности каталитического действия граней разных индексов, отсутствующих у комплексов, а также участие структур с аномальной валентностью и с нарушением стехиометрии в гетерогенном катализе. Имеются и свои специфические структуры и процессы у координационных соединений в растворе. Поэтому проблема состоит не в установлении весьма маловероятного тождества этих двух типов катализа, а в выяснении, в каких случаях и как далеко заходит сходство механизмов катализа в разных фазах и в чем заключается специфика каталитического действия кристаллических катализаторов и комплексных растворенных соединений. Это в значительной мере вопрос о роли в катализе процессов, действие которых локализовано около одного атома (иона) [или около небольших групп атомов (ионов) и их лигандов] и процессов, в которых прямо или косвенно участвуют макроструктуры твердого тела. Относительное [c.49]

    Книга посвящена гомогенному катализу комплексами переходных металлов — проблеме, чрезвычайно важной для самих различных областей химии органической, химии координационных соединений, гетерогенного катализа, нефтехимии, химии элементоорганических соединений, биохимии и др. Рассмотрены вопросы гомогенного гидрирования олефинов и Диенов, диМеризация и со-димеризация олефинов, реакции непредельных соединений, протекающие на комплексных никелевых катализаторах. [c.4]

    Сборник статей исследования по изучению глубокого механизма катализа простых и сложных реакций в газовой и жидкой фазе с помощью новых экспериментальных методов (спектральных, микроволновых, электронных, изотопных и т. Д.), а также обобщение работ по теории простых и сложных процессов. Особое внимание уделено синтезу аммиака, гидрированию и дегидрированию, полимеризации, изотопному обмену. Отдельные статьи посвящены гомогенному катализу, комплексным соединениям и координационным механизмам в гетерогенном катализе. [c.2]


    Любое твердое тело является координационно ненасыщенным в том смысле, что образование поверхности раздела твердое тело — вакуум требует затраты энергии. Вещество, точнее его молекулы, составляющие твердое тело, будут адсорбироваться на поверхности раздела, увеличивая объем последнего, соответственно с уменьшением свободной энергии системы. Подходящие молекулы также будут адсорбироваться на центрах роста кристалла. Идея о том, что адсорбционно- и каталитически-активные центры являются координационно ненасыщенными, достаточно стара и в качественном смысле плодотворна. Однако для детальных прогнозов, а тем более количественных оценок должна быть ограничена область гетерогенных катализаторов и реакций, к которой непосредственно могут быть приложимы закономерности катализа через координационные комплексные соединения, достаточно подробно разработанные для случаев гомогенного катализа. При таком подходе к области координационного гетерогенного катализа не будут относиться реакции на твердых бренстедовских и льюисовских кислотах и реакции, протекающие по коллективному механизму на полупроводниках или металлах с четко выраженным зонным механизмом проводимости. Если первое ограничение достаточно определенно и легко распозна-. ваемо, то второе, наоборот, не имеет четкой границы, и априори бывает трудно отличить механизм через комплексообразование от классического полупроводникового механизма гетерогенного катализа. Это же относится и к металлам. Нанример, адсорбция водорода или насыщенных углеводородов на платине или никеле протекает но диссоциативному механизму, в то время как адсорбцию на хроме [c.18]

    В тематике лекций проявилась тенденция к применению в гетерогенном катализе представлений о координационном механизме действия катализаторов. Вопросам гомогенного комплексного катализа, а также его связи с гетерогенным катализом посвящены лекции Н. Н. Семенова и А. Е. Шилова, Б. А. Долгоплоска, Дж. Л. Гарнетта и Ю. Фурукавы. Последняя лекция приведена в виде расширенных тезисов. [c.3]

    Первоначальное понятие о комплексных соединениях, образованных центральным атомом или ионом металла и совокупностью ( luster) ионов или молекул, именуемых лигандами (число которых называют координационным числом), в последнее время было расширено, и теперь оно охватывает большую часть неорганических соединений в молекулярном (растворы) или кристаллическом (твердые тела) состоянии. Нихолм [4] указывает, что химию комплексных соединений следует рассматривать как некоторый подход к неорганической химии, а не просто как один из ее разделов и что в связи с этим она должна быть полезной для понимания как гомогенного, так и гетерогенного катализа. Нас интересует динамика обратимых изменений координационного числа и степени окисления центрального атома, и мы [c.15]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]


    Специфической проблемой гетерогенного координационного катализа является целенаправленный перенос на твердую поверхность комплексов, являющихся активными гомогенными катализаторами. Хотя эта проблема прежде всего связана с вопросами приготовления катализаторов и даже самой технологии химических процессов, однако, в плане рассматриваемых задач существенно отметить, что в настоящее время разработаны методы связывания с поверхностью твердых тел (как неорганических, так и полимерных органических) гомогенных комплексных катализаторов почти любой структуры. Более подробно эти методы, получившие название гетерогенизации гомогенных катализаторов, изложены в работе [33]. Развитие методов гетерогенизации дает возможность использовать несколько менее сложные теоретические и расчетные методы прогнозирования активности гомогенных комплексных катализаторов для подбора соответствующего объекта, а затем осуществить гетерогенизацию подобранного катализатора, возложив эту задачу на специалистов в области приготовления катализаторов. [c.20]


Краткая химическая энциклопедия Том 2 (1963) -- [ c.475 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенные гомогенных

Гетерогенный катализ Катализ

Гетерогенный катализ Катализ гетерогенный

Гомогенный катализ Катализ

Катализ гетерогенно-гомогенный гетерогенный

Катализ гетерогенно-гомогенный гомогенный

Катализ гетерогенный

Катализ гомогенный

Катализ гомогенный и гетерогенный

Катализ координационно-комплексны



© 2024 chem21.info Реклама на сайте