Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетерогенный катализ в газовых реакциях

    Каталитическая очистка газов основана на каталитических реакциях, в результате которых находящиеся в газе вредные примеси превращаются в другие соединения. Таким образом, в отличие от рассмотренных приемов каталитические методы заключаются не в извлечении токсичных примесей из газового потока, а в превращении их в соединения, присутствие которых допустимо в атмосфере, или в соединения, сравнительно легко удаляемые из газа. При этом требуются дополнительные стадии очистки— абсорбция жидкостями или твердыми адсорбентами. Для очистки газов применяется почти исключительно гетерогенный катализ на твердых катализаторах (см. ч. I, гл. VII). Наиболее распространен способ каталитического окисления токсичных органических примесей и оксида углерода при низких температурах, т. е. без подогрева очищаемого газа (кли воздуха). Каталитическая очистка от вредных оксидов и сернистых соединений производится также их гидрированием так, методом избирательного катализа гидрируют СО до СН4 и Н2О, оксиды азота — до N2 и Н2О и др. [c.237]


    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]

    Как физическая, так и химическая адсорбция играют огромную роль в гетерогенном катализе, так как на поверхности катализатора молекулы адсорбтива реагируют друг с другом гораздо быстрее. Разные исследователи высказывали различные мнения о причине этого явления. Адсорбент, сгущая и ориентируя на своей поверхности молекулы участвующих в реакции компонентов, способствует тем самым протеканию реакции, в конечном счете сам в нее не вступая. Ускорение реакции на поверхности адсорбента (катализатора) может являться результатом и того, что поверхностные силы обусловливают диссоциацию молекул адсорбтива на более реакционноспособные атомы или, по крайней мере, вызывают ослабление связи между атомами молекулы. Роль адсорбции в гетерогенном катализе подробно рассматривается в специальных курсах физической химии газовых реакций и катализа. [c.105]

    Механизм гетерогенного катализа. Каталитическая реакция в газовой фазе в присутствии твердого катализатора имеет сложный механизм. Можно предположить, что реакции такого типа проходят через следующие этапы  [c.272]

    С учетом обоих требований — генерации активных частит и возможности развития цепного процесса — место гомогенного цепного продолжения в гетерогенном катализе газовых реакций можно охарактеризовать следующим образод . [c.496]

    Влияние температуры, давления и перемешивания на скорость гомогенно-каталитических реакций аналогично обшим кинетическим закономерностям гомогенных процессов. Основным недостатком гомогенного катализа является трудность выделения катализатора из конечной продукционной смеси (жидкости или газа), в результате чего часть катализатора теряется безвозвратно, а продукт загрязняется им. При гетерогенном катализе газовая или жидкая реакционная смесь легко отделяется от твердого катализатора. [c.224]


    Явление изменения скорости протекания химической реакции, вызываемое различными катализаторами, называется катализом. Различают однородный (гомогенный) и неоднородный (гетерогенный) катализы. При неоднородном катализе катализатор и реагирующие вещества находятся в разных состояниях (фазах), при эюм часто катализатор является твердым телом, а реагирующее вещество находится в жидкой или газовой фазе. К последнему типу катализа относится и каталитический крекинг иногда такие каталитические процессы называют контактными, а твердые катализаторы контактными веществами или просто контактами. [c.44]

    Реакции, протекающие в присутствии катализаторов, принято разделять на реакции гомогенного и гетерогенного катализа. К реакциям гомогенного катализа относятся такие, в которых катализатор и реагенты находятся в газовой или жидкой фазе. В этом случае границы раздела между катализатором и реагирующими веществами отсутствуют. При гетерогенном катализе катализатор я реагенты находятся в разных фазах и взаимодействие протекает на поверхности раздела фаз. В процессах гетерогенного катализа особенно широко применяются твердые катализаторы. [c.133]

    В заключение надо сказать, что изучаемое нами явление низкотемпературного окисления 50г не является обособленным от обычного процесса гетерогенного катализа этой реакции. При повышении температуры окисления намечается постепенный переход от случая удерживания продукта окисления на поверхности катализатора к случаю отрыва его от поверхности и перехода в газовую фазу. Таким образом, это низкотемпературное окисление можно рассматривать как случаи замораживания каталитического процесса на первой собственно каталитической стадии. [c.418]

    Различные каталитические реакции принято разделять на реакции гомогенного катализа и реакции гетерогенного катализа. К первым относятся такие, в которых катализатор находится в однородной газовой или жидкой смеси с реагирующими веществами в гетерогенном же катализе катализатор находится в виде самостоятельной фазы и взаимодействие происходит на поверхности его. [c.493]

    В последние годы опубликовано несколько монографий по химической кинетике. В Советском Союзе изданы монографии Н. Н. Семенова О некоторых проблемах химической кинетики и реакционной способности (1958) и В. Н. Кондратьева Кинетика газовых химических реакций (1958). В русском переводе вышла книга С. Бенсона Основы химической кинетики (1964). Эти обширные монографии дают достаточно полное представление о ряде важнейших направлений научных исследований в области химической кинетики. Однако, поскольку они содержат большое количество специального и зачастую дискуссионного материала, изучение этих монографий требует от читателя знакомства с основами химической кинетики. В то же время учебная литература по химической кинетике все еще немногочисленна. Особенно ощущался недостаток в учебнике по современным основам химической кинетики. По-видимому вследствие этого первое издание настоящего Курса химической кинетики , вышедшее в свет в 1962 г., разошлось очень быстро и возникла необходимость в выпуске второго издания — исправленного и дополненного. В предлагаемом курсе изложены теоретические основы кинетики гомогенных химических реакций. Кинетика гетерогенных реакций в курсе не рассматривается в связи с тем, что она в основном имеет значение для области гетерогенного катализа, которая представляет собой самостоятельный раздел науки. [c.4]

    В настоящее время, в основном благодаря работам советских химиков, теоретически наиболее разработанной областью гетерогенного катализа являются реакции в газовой фазе, катализируемые твердыми катализаторами. В химической, в частности, в анилинокрасочной промышленности, также наибольшее применение нашли гетерогенные каталитические реакции этого типа. Поэтому при изложении общих вопросов гетерогенного катализа мы ограничимся рассмотрением только реакций газов или паров с участием твердых катализаторов. [c.812]

    Открытие явления автоколебания скорости гетерогенных каталитических реакций имеет важное значение для теории и практики гетерогенного катализа. Обнаруженные в гетерогенном катализе автоколебания скорости показывают, что каталитические свойства поверхности изменяются под действием протекающего каталитического процесса, и состав поверхности может быть нестационарный по отношению к составу газовой фазы. Автоколебания скорости реакции существуют только вдали от равновесных условий и обусловлены тем что механизм гетерогенных каталитических реакций может быть разным вблизи и вдали от равновесных условий. [c.315]


    Возможность изменять скорость реакции в пшроких пределах (большей частью стремятся увеличить ее) является весьма ценной для любого практического применения реакции. Большая часть продукции, вырабатываемой химической промышленностью и смежными отраслями промышленности, получается с помощью гетерогенного (обычно газового) катализа. Гетерогенный катализ в жидкой фазе тоже находит применение (например, при гидрогенизации жиров), но значительно реже, чем газовый катализ. [c.495]

    Гомогенный и гетерогенный катализ. Если реагенты и катализатор находятся в одной фазе (газовая смесь или раствор), то осуществляется гомогенный катализ. Если реагенты (газ или жидкость) плохо растворимы в жидком катализаторе или жидкий катализатор плохо растворим в жидких реагентах и имеются две фазы, то, хотя реакция осуществляется гомогенно, в одной из соприкасающихся фаз, она является гетерофазной. При определенных условиях кинетика такой реакции определяется массообменом между фазами катализатора и реагентов, и в этом случае протекает гетерогенная реакция. При гетерогенном катализе катализатор— твердое вещество, а реагенты —жидкие или газообразные вещества. Реакция в этом случае протекает на поверхности катализатора. Гетерогенный катализ распространен в нефтеперерабатывающей промышленности значительно больше, чем гомогенный. [c.135]

    Каталитический крекинг — типичный пример гетерогенного катализа реакции протекают на границе двух фаз твердой (катализатор) и газовой или жидкой (сырье). Поэтому решающее значение имеют структура и поверхность катализатора. Алюмосиликатные катализаторы вследствие своей пористости обладают высокоразвитой поверхностью—в среднем 150—400 однако установлено, что активная поверхность их может быть при этом значительно меньше. Величина активной поверхности связана с размерами пор катализатора если диаметр некоторой части пор меньше среднего диаметра молекул сырья, то естественно, что поверхность этих пор не будет использована. Однако в мелкие поры будут поступать продукты разложения, которые подвергнутся дальнейшим превращениям и вызовут излишнее коксо- и газообразование. Поэтому при крекинге тяжелых видов сырья рекомендуются широкопористые катализаторы. Для некоторых катализаторов в табл. 24 указан средний диаметр пор. [c.149]

    К гетерогенным реакциям относятся, например, процессы растворения (соли водой или металла кислотой) кристаллизацию соли из раствора также можно рассматривать как гетерогенную реакцию. Следует отметить, что на поверхности раздела фаз газовые реакции протекают с большей скоростью, чем в объеме (гетерогенный катализ). Здесь граница раздела фаз играет роль катализатора (например, в различных реакциях гидрирования). [c.186]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]

    В разд. 10.5 мы познакомились с гетерогенным катализом, рассматривая окисление 802 в Оз. Многие промышленно важные реакции, протекающие в газовой фазе, катализируются поверхностью твердых веществ. Реакции в растворах также могут катализироваться твердыми веществами. Гетерогенные катализаторы часто изготовляют из тонко измельченных металлов или оксидов металлов. Поскольку каталитические реакции протекают на поверхности, часто прибегают к специальным методам получения катализаторов с очень большой площадью поверхности. [c.28]

    Исходной стадией гетерогенного катализа обычно является адсорбция реагентов. Как уже отмечалось в гл. 2, адсорбцию следует отличать от абсорбции. Адсорбция-это связывание молекул с поверхностью, тогда как абсорбция означает поглощение молекул в объеме другого вещества. Адсорбция происходит вследствие чрезвычайно высокой реакционной способности атомов или ионов на поверхности твердого вещества. В отличие от таких же частиц в объеме твердого вещества они имеют ненасыщенные валентные возможности. Благодаря способности поверхностных атомов или ионов к образованию связей молекулы из газовой фазы или раствора могут связываться с поверхностью твердого вещества. В действительности не все атомы или ионы поверхности обладают реакционной способностью, так как на поверхности могут быть адсорбированы различные примеси (загрязнения), которые занимают многие потенциально реакционноспособные центры и блокируют дальнейшую реакцию. Места поверхности, на которых могут адсорбироваться реагирующие молекулы, называются активными центрами. Число активных центров, приходящееся на единицу массы катализатора, зависит от природы катализатора, от способа его приготовления и обработки непосредственно перед использованием. [c.28]

    Гетерогенные процессы, проходящие на поверхности раздела кристалл — газ, чрезвычайно многообразны такие реакции щи-роко используются в химической технологии. Из множества этих реакций ниже рассмотрены четыре группы процессов горение твердого топлива, восстановление оксидов металлов, процессы, лежащие в основе газовой коррозии, и гетерогенный катализ. [c.230]

    В гетерогенном катализе для объяснения компенсационного эффекта в основном используются представления об изменении тех или иных свойств твердых тел. Компенсационный эффект —явление более широкое, свойственное не только гетерогенному катализу. Этот эффект характерен для процессов гомогенного катализа, электродных реакций, для реакций радикалов с молекулами в газовой фазе, для химических реакций в растворах, для процессов диффузии. [c.135]

Рис. XIX.I. Схема про-текания газовой реакции без катализатора ]) и при гетерогенном катализе (//) Рис. XIX.I. Схема про-текания <a href="/info/6454">газовой реакции</a> без катализатора ]) и при гетерогенном катализе (//)
    Весь каталитический процесс, осуществляемый на твердом катализаторе, можно разбить на пять последовательно протекающих стадий 1) диффузия молекул реагирующих веществ к поверхности катализатора 2) адсорбция молекул реагирующих веществ на катализаторе 3) химическая реакция 4) десорбция молекул продуктов реакции 5) диффузия молекул продуктов реакции с поверхности катализатора в жидкую или газовую фазу. Первая и последняя стадии называются диффузионными, остальные кинетическими. Все эти стадии могут идти с различными скоростями и скорость всего каталитического процесса лимитируется (определяется) его наиболее медленной стадией. При низких температурах диффузионные стадии не влияют на скорость катализа, так как они обычно идут быстрее кинетических процессов. Кинетические стадии (адсорбция, химическая реакция, десорбция) характеризуются невысокими значениями энергии активации и, следовательно, также идут с большой скоростью. С повышением температуры скорость диффузии растет медленнее, чем скорость химической реакции, и при высоких температурах диффузионные стадии лимитируют скорость гетерогенного катализа. [c.109]

    При гомогенном катализе все взаимодействия, включая и промежуточные стадии, протекают в однородной среде (в газовой или жидкой фазе). При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах и каталитическая реакция протекает на границе раздела фаз. При этом катализатор обычно бывает твердым и на его поверхности происходят все промежуточные взаимодействия. Реагирующие вещества находятся в жидкой или газовой фазе. [c.142]

    Пример 1-3. Моделирование кинетики гетерогенного каталитического процесса. Рассмотрим пример, взятый из области гетерогенного катализа. Опишем кинетику реакции гидрогенизации, проводимой в аппарате идеального смешения. В ней принимают участие вещества, находящиеся в трех различных фазах в газовой фазе содержится водород (под большим давлением), в жидкой фазе — четыре вещества Л, 5, С и Н , а в твердой фазе — катализатор, представляющий собой слой зернистого материала. В этой системе происходят следующие реакции  [c.129]

    В зависимости от агрегатного состояния катализатора и реагирующих веществ различают катализ гомогенный и гетерогенный. Примером гомогенного катализа является реакция окисления СО (в газовой фазе в присутствии паров воды) кислородом, а также действие разнообразных ферментов в биологических процессах. Гетерогенно-каталитическими являются процессы синтеза аммиака (катализатор железо), окисления ЗОг до 80з (катализатор платина или оксид ванадия) и т.д. [c.225]

    Предполагается, что на активных катализаторах активация кислорода протекает с по. ощью чередующегося восстановления и окисления катализатора Гетерогенный катализ газовых реакций Гетерогенный катализ газовых реакций для определенных реакций пригодны как катализаторы пары окислов, у которых равновесное давление кислорода при соответствующей температуре равно давлению кислорода в катализируемой газовой смеси [c.183]

    Почти во всех исследованиях в области гетерогенного катализа скорость реакции определялась как скорость исчезновения одного из реагирующих веществ из газовой фазы или как скорость выделения в газовую фазу продукта реакции. Изменение свойств катализатора можно использовать для измерения скорости реакции только в одном тине гетерогенных реакций, в котором единственной реакцией является хемосорбция или десорбция атомов или молекул и в котором не обнаруживается дальнейшая реакция между хемосорбированными фрагментами. В этих случаях можно воспользоваться изменением таких поверхностных свойств, как коэффициент аккомодации [7, 12], контактный потенциал [13], эмиссия электронов [14] или поверхностная электропроводность [15]. Подобные исследования важны для развития современных представлений о катализе, так как хемосорбция представляет неотъемлемую стадию всех гетерогенно-каталитических реакций и изменения свойств поверхности можно использовать для установления того, какая хемосорбция происходит во время катализируемых реакций и, следовательно, каковы возможные механизмы последних. Так, например, Дауден [10] связал гидро- и дегидрогенизационные свойства ряда смешанных окисей с их полупроводниковыми свойствами. Эти методы рассмотрены в следующей главе. [c.158]

    Промышленное применение гетерогенного катализа. Промышленные реакции К. г. в газовых системах обычно осуществляют в неподвижном слое зернистого катализатора, через к-рый проходит реакционная смесь. За последние 20 лет получили распространение контактные аппараты с псевдоожиженным слоем катализатора, поддерживаемом во взвешенном состоянии подымающимся потоком реакционной смеси. Преимущество катализа в псевдоожиженном слое заключается в полноте выравнивания темн-ры в слое, высоком коэфф. теплопередачи между слоем и поверхностями теплообмена, легкости непрерывной смены катализатора, возможности применения мелкозернистых катализаторов. Основным недостатком является истираемость катализатора и необходимость специальных приспособлений для отделения его от газового потока. Катализ в псевдоожиженном слое целесообразно испо.пьзовать в случаях частой смены каталпзатора для-регенерации, необходимости отвода больших количеств тепла реакции и, в нек-рых случаях, для увеличения стенени использования внутренней поверхности зерен путем значительного уменьшения их размеров. [c.236]

    Наибольшее внимание С. И. Вольфковича привлекает область химии и технологии фосфорных, азотных, калийных, фтористых, сернистых й борных соединений. Он предложил и обосновал ряд новых химико-технологических процессов, большая часть которых базируется на гетерогенных и газовых реакциях с применением высоких температур, катализа, давления, электростатических разрядов и других приемов современной технологии. [c.8]

    Наиболее важным и наиболее распространенным видом гетерогенного катализа является катализ газовых реакций на поверхности твердых катализаторов. Так как в гетерогенном катализе большое значение пмеет поверхность, то катализаторы обычно приготавливаются путем распределения его на твердом носителе с высокоразвитой поверхностью. Такими носителями чаще всего служат силикагель, активный уголь, окись алюминия, асбест и др. Примерами гетерогенного катализа могут служить следующие реакции 1) контактный способ получения серной кислоты путем окисления сернистого газа кислоррдом воздуха па катализаторах Р1 и У20д 2) синтез метилового спирта (метанола) из водорода и окиси углерода на катализаторе ХпО (активированном СгзОд, У О,,) 3) реакции гидрогенизации непредельных соединений (Сабатье и Зелинский), имеющие значение и производстве душистых веществ и жиров, например гидрогенизация этилена и ацетилена на катализаторах N1, Со, Сп, Ге  [c.187]

    Условия реакции. Ароматические углеводороды можно окислять кислородом или воздухом в газовой фазе в присутствии катализаторов (гетерогенный или гомогенный катализ) и без них в системе газ — жидкость — тйердая фаза на катализаторе и с агентами окисления (HNOз, хромовая кислота, бихроматы, перманганаты) в гомогенной жидкой фазе в системах жидкость—жидкость и жидкость—твердая фаза. В промышленности чаще всего используют окисление в газовой фазе на твердом катализаторе (гетерогенный катализ). [c.170]

    Катализом называется изменение скорости химических реакций при воздействии веществ-катализаторов, которые участвуя в процессе, остаются после его окончания химически неизменными. Катализ называется положительным, если- катализатор ускоряет реакцию и отрицательным при снижении скорбсти ее. В данной книге рассматривается, в основном, положительный гетерогенный катализ в газовой среде на твердых катализаторах. [c.61]

    Гетерогенным называют катализ на поверхности твердых тел, находящихся в контакте с реагирующими веществами в газовой фазе или в растворах. Основные теоретические положения, необходимые для понимания сущности гетерогенного катализа, уже изложены в гл. 14 в связи с обсуждением роли адсорбции в гетерогенных реакциях. При проведении реакции на поверхности твердых тел последняя играет вполне определенную роль благодаря адсорбции на поверхности понижается энергия активации катализируемой реакции. До настоящего времени еще не существует удовлетворительной количественной теории катализа. В любой каталитической реакции важнейшее значение имеет структура поверхности. Катализ протекает не на всей поверхности твердого тела, а главным образом на активных центрах (дислокациях, ребрах кристаллов и других дефектах кристаллов). Кроме того, известно, что каталитическая активность зависит от кристаллографической плоскости, — кристаллы, ориентированные в некоторых определенных направлениях, обладают максимальной активностью. Большое значение в гетерогенном катализе имеют смешанные катализаторы. Примером могут служить почти все известные газовые реакции, используемые в химических технологических процессах (синтез аммиака, синтез 50з, гидрирование угля по Бергиусу или Фишеру— Тропшу, окисление аммиака по Оствальду и многие другие). [c.196]

    Различают гомогенный (однородный) и гетерогенный (неоднородный) катализ. При гомогенном катализе катализатор и реагенты находятся в одной и той же фазе (жидкой или газовой). Для гомогенного катализа скорость химической реакции пропорциональна концентрации катализатора. При гетерогенном катализе реагирующие вещества и катализатор находятся в разных фазах, т. е. между катализатором и реагирующими веществами имеется поверхность раздела. При этом катализатор — твердое вещество, а реагирующие вещества — жидкости или газы. Например, добавление небольшого количества диоксида марганца Мп02 (твердая фаза) в качестве катализатора к Н2О2 приводит к его быстрому и бурному разложению  [c.26]

    Механизмы каталитического взаимодействия очень сложны, разнообразны и очень редко твердо установлены. Как и все реакции, каталитические реакции также подразделяются па гомогенные и гетерогенные. При гомогенном катализе все взаимодействия, включая и промежуточные стадии, протекают в однородной среде (в газовой или жидкой фазе). При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах и каталитическая реакция протекает на границе раздела фаз. При этом катализатор обычно бывает твердым и на его поверхности происходят все промежуточные взаимодействия. Реагирующие вещества находятся в жидкой или газовой фазе. Примером достаточно хорошо изученной гомогенной каталитической реакции может служить питрозный способ получения серной кислоты. В процессе ее получения диоксид серы поглощается раствором оксидов азота в концентрированной серной кислоте (нитрозой) и окисляется в этом растворе по схеме [c.235]

    Особенно большое промышленное значение имеет гетерогенный катализ. Уже в самом начале исследований кинетики газовых реакций, происходящих на поверхности твердых катализаторов, было установлено, что каталитическая активность обусловлена явлениями адсорбции. Для приближенного рассмотрения кинетики подобных реакций целесообразно использовать уже упоминавшееся уравнение изотермы Лангмюра. Это уравнение устанавливает связь между степенью заполнения (9) поверхности катализатора молекулами реагирующего вещества и парциальным давлением этого веп1ества в газовой фазе р  [c.277]

    Механизмы гетерогенных каталитических реакций, строго говоря, никогда не бывают мономолекулярными. Они всегда включают, напрпмер, стадии адсорбции, в которых исходных веществ, как минимум, два — газ и катализатор. Однако если рассматривать ире-вращепия только поверхностных соединений при фиксированном составе газовой фазы (заметим, что большинство кинетических экспериментов в гетерогенном катализе проводится именно таким образом), то механизм каталитической реакции можно считать совокупностью моио молекулярных стадий. В каждой элементарной реакции здесь будет участвовать не более одной молекулы промежуточного вещества. М. И. Темкнн назвал такие механизмы линейными, так как скорости реакций в них зависят от концентраций промежуточных веществ линейно. [c.72]

    ГОМОГЕННЫЙ КАТАЛИЗ, ускорение хим р-ции в присутствии катализатора, к-рый находится в одной фазе с исходными реагентами (субстратами) в газовой фазе или р-ре При Г к, как и при гетерогенном катализе, катализатор в р-ции не расходуется, однако является ее необходимым участником, без катализатора р-ция протекает гораздо медленнее или не идет вовсе Механизм гочогенно-к аталитическ нх реакций. Можно выделить сравнительно небольшую группу процессов, в к-рых участие катализатора не связано с образованием определенного хим соед с субстратом К таким процессам относится, напр, катализ парамагн частицами синглет-триплетного превращения карбенов (изменяется электронный спин молекулы) или орто-, пара-превращение Hj (изменяется ядерный спин) Формально к Г к можно отнести газофазные р-ции рекомбинации атомов и простейших радика-тов в присут химически инертных частиц, к-рые, участв)я [c.591]


Библиография для Гетерогенный катализ в газовых реакциях: [c.240]   
Смотреть страницы где упоминается термин Гетерогенный катализ в газовых реакциях: [c.41]    [c.81]    [c.294]    [c.295]    [c.46]    [c.4]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенный катализ Катализ

Гетерогенный катализ Катализ гетерогенный

Катализ газовый

Катализ гетерогенный

Катализ реакции

Реакции газовые

Реакции гетерогенные



© 2025 chem21.info Реклама на сайте