Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения хлористого алюминия с органическими соединениями

    Комплексные соединения хлористого алюминия с органическими веществами [c.55]

    Аналогичные комплексные соединения образуются из хлористого алюминия и любого органического соединения, содержащего карбонильную группу. Образующийся в реакции кетон также связывает эквива- [c.295]

    Установленный нами механизм алкилирования в присутствии хлористого алюминия не ограничивается растворами, содержащими нитробензол. Известно, что этот катализатор дает комплексные соединения со многими органическими веществами, причем все они проводят электрический ток [14]. Их образование может явиться существенным фактором ускорения реакции благодаря катализу с помощью катиона этих комплексов, чем объясняется и высокая активность комплексов Густав-сона, которые также являются ионизированными соединениями [15]. [c.434]


    Хлористый алюминий с галогенидами (лития, бериллия, титана, ванадия, хрома, марганца, железа, кобальта, никеля) Органические комплексные соединения (бензоил. ацетил) [c.8]

    Смесь галогенидов (железа, цинка, сурьмы) и органических соединений Хлористый алюминий с углеводородами, образующими двойные соединения Комплексное соединение хлористого алюминия с бензолом Молибден [c.32]

    Фтористый бор, хлористый алюминий, хлористый цинк, хлористый титан, органические комплексные соединения и двойные соединения галогенидов [c.461]

    Метод фотометрии пламени позволяет определять лантан в присутствии других редкоземельных элементов. Спектр ланта-на в пламени смеси ацетилена с воздухом состоит из 10 групп полос, из которых наиболее интенсивными являются полосы с максимумами в области 743 и 794 ммк [512] спектры лантана в пламени гремучего газа описаны автором [538]. Чувствительность определений лантана может быть значительно -увеличена фотометрированием гексоновых экстрактов комплексных соединений лантана с теноилтрифторацетоном, переходящих в органическую фазу из 1-м. ацетатных растворов при pH = 5 [539]. Путем фотометрирования введенных в пламя гремучего газа кетон-ных экстрактов авторами было изучено влияние минеральных кислот на интенсивность излучения лантана, а также алюминия, циркония, магния, редкоземельных и других металлов. Найдено [536], что введение в растворы хлористого аммония увеличивает интенсивность молекулярных полос лантана. [c.323]

    В этой группе методов наибольшее значение приобрел процесс очистки серы безводным хлористым алюминием. Этот процесс нашел применение в СССР. Он заключается в обработке загрязненной органическими веществами (битумами) жидкой серы безводным хлористым алюминием с последующим отделением продуктов реакции от серы при ее отстаивании. При взаимодействии хлористого алюминия и битума образуется темноокрашенный вязкий продукт. Предполагают, что этот продукт является комплексной смесью нестойкого хлористого алюминия с углеродистыми соединениями. Он подобен,соединению, обнаруженному при крекинге нефти. С другой стороны, высказываются мнения, что хлористый алюминий в процессе взаимодействия органических примесей выполняет лишь роль катализатора. [c.168]

    Фтористый бор как катализатор органических реакций широко стал применяться сравнительно недавно (с 30-х годов нашего столетия), но на протяжении последних десятилетий он просто приковывал к себе внимание химиков-органиков. Фтористый бор и его многие комплексные соединения с органическими и неорганическими веществами оказались весьма активными катализаторами в таких реакциях, как алкилирование, ацили-рование, полимеризация, изомеризация, циклизация, различные конденсации и др. И сегодня он по праву занимает второе место после хлористого алюминия в ряду катализаторов, применяел1ых в органической химии. Однако надо отметить, что фтористый бор в некоторых реакциях оказался более выгодным, а иногда незаменимым, так как он менее агрессивен, чем хлористый алюминий, в меньшей степени способен вызывать нежелательные побочные реакции и нередко проявляет большую избирательность. [c.3]


    Образование комплексных соединений не ограничивается алифатическими эфирами. Так, например, цинеол образует продукты присоединения с железистосинеродистоводородной кислотой, кобальтосинеродистоводородной кислотой, хлористым цинком, иодистым кад.мием, а также с фенолами и органическими кислотами 1 . Описаны также продукты присоединения, получающиеся из жирноароматических эфиров с хлористым алюминием, бромистым алюминием и трехбромистой сурьмой 1 . [c.156]

    Основные научные исследования относятся к органической химии ч общей химии. Изучал реакции двойного обмена кислорода на галогены между высшими окислами бора, серы и фосфора и галогеип-дами тех же элементов при отсутствии воды, а также между четыреххлористым и четырехбромпсты.м углеродом и бромистыми соединениями бора, кремния и фосфора. Выяснил (1873), что с увеличением атомной массы элемента в его хлористом соединении увеличивается количество атомов хлора, заменяемых на бром, и, наоборот, с увеличением атомной массы элемента в его бромистом соединенпи уменьщается количество атомов брома, заменяемых на хлор. Установил (1877) каталитическое действие галогенидов алюминия при бромировании ароматических углеводородов, изомеризации и крекинге ациклических углеводородов. Открыл (1877) непрочные комплексные соединения галоидных солей алюминия с различными углеводородами, обладающие каталитическими свойствами (ферменты Густавсона) Установил образование промежуточных комплексных металлоорганических соедине- [c.159]

    Для возбуждения нолимеризации при производстве СК применяют инициаторы и катализаторы. В качестве инициаторов используют органические перекиси. Механизм действия этих веществ сводится к образованию радикалов, инициирующих процесс. Принято считать, что катализаторы обычно вызывают ионную полимеризацию. В качестве катализаторов лснользуют фтористый бор и хлористый алюминий (при получении полиизобутилена и бутилкаучука), комплексные смешанные катализаторы, состоящие, например, из алкильных соединений алюминия и солей титана, ванадия, кобальта, лития и его алкильных соединений (при получении стереорегулярных каучуков). [c.155]

    Метод основан на образовании окрашенного комплексного соединения цинка с дитизоном. Существенным в методе является тройная экстракция. Цинк и другие металлы, образующие комплексное соединение с дитизоном, отделяют от алюминия при pH 8,5 экстракцией раствором дитизона в четырех.хлористом углероде. Далее цинк отделяют от меди реэкстракцией из органической фазы разбавленной НС1. Кислый раствор нейтрализуют и при pH 8,5, в присутствии днэтилдитиокарбамина-та натрия, цинк снова экстрагируется в виде дитизоната. Диэтилдитиокарбаминат натрия применяют с целью маскирования мешающих элементов. Определение заканчивают колориметрированием по методу одноцветной окраски. [c.285]

    Эффективными сокатализаторами оказьгеаются также другие алкильные и арильные производные свинца, используемые в сочетании с галогенидами титана, циркония и гафния или с комплексными солями этих галогенидов и галогенидов щелочных металлов и аммония, например с фтор-титанатом калия, хлортитанатом аммония и фторцирконатом цезия [231]. Активность каталитических систем, содержащих органические соединения свинца и галогениды титана или других металлов IV—VI групп, возрастает при добавлении галогенидов металлов II или 1П групп, например хлористого алюминия, хлористого галлия, хлористого магния, бромистого цинка, фтористого таллия, трехфтористого бора, хлористой сурьмы [214, 256, 257]. [c.109]

    Аналогичные комплексные соединения образуются из хлористого алюминия и любого органического соединения, содержащего карбонильную группу. Образующийся в реакции кетон также связывает эквивалентное количество AI I3. В безводной среде эти комплексы устойчивы и кетон выделяется только при гидролизе реакционной смеси  [c.301]

    Более поздний патент [23] еще в большей степени подкрепляет эту точку зрения. Б нем предлагается при полимеризации этилена и других а-олефинов использовать хлористый алюминий и любой из перечисленных ниже металлов натрий, калий, литий, рубидий, цезий, бериллий, магний, цинк, кадмий, ртуть, алюминий, галлий, индий и таллий в сочетании с производными титана, циркония, гафния или тория. В число этих производных металлов IVA группы входят соли одноосновных органических кислот, например ацетат титана и пропионат циркония, комплексные соли двухосновных органических кислот, например натрийтитанмалонат и калийтитаноксалат, алкого.ляты, например тетрабутилтитанат и дихлор-бутилтитанат, а также производные аминоспиртов, например триэтанол-аминтитанат. Особо подчеркивается, что необходимо использовать такой свободный металл или элемент вместе с хлористым алюминием, так как в сочетании с производными металлов IVA группы он сам по себе не является эффективным катализатором полимеризации. Лучше всего брать 0,1—5 молей хлористого алюминия и 0,1—5 молей свободного металла на 1 моль соединения металла IVA группы. [c.174]


    Большая устойчивость димерной формы по сравнению с устойчивостью мономерной с неполным числом электронов, несомненно, обязана существованию нескольких резонансных форм ЛиС ,,, которые содействуют его устойчивости. На основании приведенной выше электронной стр ктуры нужно было бы ожидать, что только мономерный хлористый алюминий образует комплексы с органическими соединениями. Однако в реакциях Фриделя—Крафтса допускают, что комплексы образуются между А1С1, или АТдС ,. и одним или со всеми наличными компонентами ароматр1че-ским углеводородом, органическим галоидным соединением и продуктами реакции. Доказано существование комплексных соединений следующих типов  [c.70]


Смотреть страницы где упоминается термин Комплексные соединения хлористого алюминия с органическими соединениями: [c.1220]    [c.1220]    [c.752]    [c.1501]    [c.516]    [c.653]    [c.105]    [c.973]    [c.105]    [c.1182]    [c.69]    [c.316]    [c.385]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.55 , c.62 , c.69 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий органические соединения



© 2025 chem21.info Реклама на сайте