Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бронзы плавка

    Создание вакуума (давление ЫО Па) в печи позволяет осуществлять термотехнологические процессы, которые не могут протекать при других условиях (например, рафинирование алюминиевых сплавов, плавка хромистой бронзы и т. д.). Создание псевдоожижен- [c.117]

    Печи для плавки сплавов на основе меди. Канальные индукционные печи для плавки и подогрева меди и спла ВОВ на медной основе (латуни, бронзы, томпака, мель хиора и т. п.) изготавливаются как периодического, так и непрерывного действия (миксеры). Корпус печи кон струируется прямоугольной или цилиндрической формы В последнее время применяют печи барабанного типа со сменными индукционными единицами. На рис. 3.10 при ведена конструкция печи ИЛК-16, имеющей цилиндри ческую ванну и щесть индукционных отъемных единиц Футеровка выполняется из шамотной набивной массы Теплоизоляцией служит диатомитовый кирпич. При плавке латуней и бронз температура разлива составляет 1100—1200° С. Большой перегрев металла свыше указанного значения может вызвать так называемую цинковую пульсацию, которая возникает при парообразовании цинка, входящего в состав расплава (цинк кипит при 916° С, тогда как температура плавления меди 1083° С). Цинковая пульсация выражается в кратковременном прекращении тока в каналах печи и затем его восстановлении, так как парообразование при исчезновении тока прекращается. Это приводит к характерному качанию стрелок измерительных приборов. [c.124]


    Обычно магнитопровод шихтуется из листов прямоугольной формы. Листы стягиваются шпильками, вдетыми в изолирующие втулки из текстолита или бакелита. Стяжные болты и шпильки изготовляются из немагнитной стали или бронзы. Для увеличения жесткости пакета наружные листы выполняются из немагнитной стали толщиной 5—10 мм. Поперечное сечеиие ярма и сердечника делаются прямоугольным или квадратным, и только в случае больших индукций сечение сердечника выполняется крестообразным или многоступенчатым. На рис. 3.9, а, б приведены однофазная и двухфазная конструкции отъемных индукционных единиц для плавки чугуна. [c.119]

    Плавка хромистой бронзы в вакууме позволяет не только освободить металл от растворенных газов (водород, кислород, азот), но и снизить содержание вредных легкоплавких примесей висмута, свинца и сурьмы, оказывающих значительное влияние на снижение жаропрочности хромистой бронзы. [c.79]

    Олово применяют для лужения жести, в производстве сплавов (бронз, баббитов), для пайки и припоя, для изготовления фольги. Мировое производство олова составляет сейчас около 250 тыс. т в год. В природе олово встречается в виде минерала касситерита ЗпОг. Оловянные руды, содержащие этот минерал, вначале обогащают (преимущественно гравитацией). Концентраты после предварительной обработки для удаления основного количества примесей (обжига, магнитной сепарации, спекания с содой и т. д.) подвергают восстановительной плавке в отражательных или электрических печах с получением чернового олова. [c.117]

    Возникновение М. относится к глубокой древности, выплавка меди производилась уже в 7-б-м тыс. до н.э. (юго-зап. часть Малой Азии). Вначале человек познакомился с самородными металлами-золотом, серебром, медью и метеоритным железом, а затем научился производить металлы. Первые металлич. изделия изготовлялись в холодном состоянии. После открытия горячей обработки (ковки) металлич. изделия получают более широкое распространение. Первоначально выплавку Си производили из окисленных медных руд (литье, 5-4-е тыс. до н.э.), переработка сульфидных руд, их окисление и рафинирование Си относятся ко 2-му тыс. до н. э. (Ближний Восток и Центр. Европа). Во 2-м тыс. до н.э. медь стала вытесняться ее сплавом - бронзой (бронзовый век). В сер. 2-го тыс. до н.э. осваивается получение Ре из руд (сыродутный процесс). В дальнейшем успехи в произ-ве Ре (овладение процессами его науглероживания и закалки) привели к появлению литого металла и стали. Эти усовершенствования обеспечили главенствующее положение черным металлам среди материалов уже в 1-м тыс. до н.э. (железный век). На протяжении почти трех тысячелетий М. железа не претерпевала принципиальных изменений. В 18 в. в Европе открыт способ произ-ва литой стали (тигельная плавка), а в 19 в.-еще три новых процесса (бессемеровский, мартеновский и тома-совский). [c.52]


    Особо чистое О. для полупроводниковой техники получают дополнит, очисткой-электролизом и зонной плавкой, восстановлением очищенных хлоридов. Вторичное О. извлекают из отходов белой жести и сплавов, напр, бронз. Для переработки бедных концентратов перспективно применение способов, основанных на высокой летучести хлоридов О. и их способности восстанавливаться А1, М Zn. [c.383]

    Несколько иной является практика использования рафинировочных шлаков Московского медеэлектролитного завода. Их плавят в шахтной печи в составе шихт, содержащих шлаковый (15-20% Си) и латунный лом, агломерат, флюсы (все пр 15-25%) и 17% кокса. Продукт плавки — черновая бронза состава, % 82-85 Си 4,5-5,0 Sn 4,5-6,0 Ptr, [c.126]

    В целом шахтная и конвертерная плавки обеспечивают достаточно высокое извлечение ряда металлов (медь, цинк, свинец, олово), однако неудовлетворительно извлекаются никель и кобальт. Последние на 70-80% переходят в черную, а затем черновую медь, из которой далее практически не извлекаются и, кроме того, отрицательно влияют на процесс получения катодной меди. Тем не менее восстановительная шахтная плавка и конвертирование остаются основными методами переработки медьсодержащего сырья на черновую медь и бронзу. В них заложены значительные резервы улучшения технико-экономических показателей производства, в частности шахтной плавки, за счет применения воздуха, обогащенного кислородом до 25%, и дутья, подогретого до 350°С (Худяков...-1985 г.). [c.129]

    Недостатками дуговых печей являются некоторый угар металла вследствие местного перегрева в зоне электрической дуги, недостаточная стойкость футеровки, подвергающейся действию открытой дуги, а также значительный шум, создаваемый дугой. Поэтому дуговые печи косвенного нагрева имеют ограниченное применение, их используют для плавки медных и никелевых сплавов (латуни, бронзы и некоторых других). Угар металла, в основном цинка, при плавке латуни достигает 3—4%, удельный расход энергии находится в пределах 300—350 квт-ч1т для латуни, 350—400 квт-ч1т для меди и бронзы и 600— 850 квт-ч1т для медноникелевых сплавов. [c.269]

    В печах со стальным сердечником достигается весьма малый угар металла (I—2%) и пониженный удельный расход электроэнергии по сравнению с печами дуговыми и сопротивления при плавке латуни 200—220 квт-ч т, бронзы — 300—350 квт-ч т, для алюминиевых сплавов — 450—500 квт-ч т. [c.275]

    Индукционные печи с железным сердечником емкостью 0,3 0,6 1,2 и 2 т применяют в крупных литейных цехах для плавки меди, латуни, бронзы, никеля и других цветных металлов и сплавов. [c.234]

    Отражательная печь для плавки бронзы и латуни (пыль, возгоны, в основном ZnO)............... 2,5-0,08 99—82 72—97 1,4 [c.110]

    Зазор между кожухом и каркасом на участке, где нет огнеупорной кладки, заполняют теплоизоляционным материалом. Каркас из немагнитного металла для плавки бронзы и латуни набивают массой, состоящей из 96% мелкоизмельченного кварца, 2% буры, 1,5% дробленого стекла и 0,5% глины для плавки никелевых сплавов— 96,5% магнезита, 3% и 0,5% дробленого стекла. [c.252]

    Факторы, влияющие на растворимость газов в жидкостях, учитываются в практической работе. Например, чтобы повысить содержание двуокиси углерода в готовом npo iyKTe, процесс получения газированных вод и шампанских вин ведут при повышенном давлении и сравнительно низкой температуре. Удаление растворенных газов из жидкостей, где их присутствие нежелательно, осуществляется длительным кипячением этих жидкостей. Так готовят дистиллированную воду, не содержащую двуокись углерода, для точных анализов. При получении высококачественных сталей, высокоэлектропроводной меди, бериллиевых бронз и изделий из них, не содержащих растворенных газов, применяют плавку и литье в вакууме. [c.253]

    Плавка бронзы и латуни Камерная — 0,11—0,13 [c.187]

    Термообработка стали нормализация закалка отпуск Плавка чугуна Плавка бронзы и латуни Обжиг цементного клинкера Обжиг шамотных огнеупоров Обжиг красного кирпича [c.133]

    При плавке бронз и латуней........0,60—0,80 [c.288]

    Чистое железо не очень твердое. Однако в процессе плавки железо может вобрать в себя столько углерода из древесного угля, что в результате образуется поверхностный слой сплава железа и углерода, называемого сталью. Этот сплав тверже самой лучшей бронзы, и изготовленный из него наконечник после заточки долга остается острым. Получение стали явилось поворотным моментом в-нстории развития металлургии и в истории развития общества. Наступил железный век. [c.12]

    При плавке алюминиевых сплавов и алюминиевых бронз содержащийся в сплаве алюминий химически взаимодействует с футеровкой, при этом он активно восстанавливает кремний из кремнезема П1 лукислой или алюмосиликатной футер. вки, Он также может реаги-рогать с оксидами железа и хрома, обычно в небольших количествах присутствующих в футеровочных материалах  [c.88]

    Большой проникающей способностью обладает свинец, оказывая пагубное действие на футеровку индукционных канальных печей при плавке свинцовых и оловосвинцовых бронз. Находясь в бронзах в элементарном состоянии, он хорошо смачивает футеровку и пропитывает почти всю толщу огнеупорной массы до слоев, где температура ниже температуры кристаллизации эвтектики (около 326 °С). Металлизация приводит к резкому возрастанию потерь теплоты кроме того, периферийные слои футеровки теряют пластичность, что обусловливает появление глубоких трещин и резкое сокращение срока службы футеровки. [c.110]


    Основнуюмассу марганца выплавляют В виде ферромарганца (сплав 60—90% Мпи40—10% Ре). Марганец (в виде ферромарганца) обладая большим сродством к кислороду, используется как раскислитель при плавке стали. Одновременно марганец образует тугоплавкие соединения с серой, обезвреживая ее влияние на сталь в процессе кристаллизации. Марганец как легирующая добавка к стали придает последней коррозионную стойкость, вязкость, твердость, но снижает пластичность. В цветной металлургии марганец используют для получения бронз и специальных латуней. Из производных марганца широко п])именяется диоксид МпОг. Из него получают все остальные сседине- [c.292]

    Применение марганца и рения. Марганец в виде ферромарганца применяется для раскисления стали при ее плавке, т. е. для удаления из нее кислорода. Кроме того, он связывает серу, что также улучшает свойства сталей. Введение до 12% Мп в сталь, иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает ее твердой и сопротивляющейся износу и ударам. Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин и т. д. В зеркальный чугун вводится до 20% Мп. Сплав 83% Си, 13% Мп и 4% N1 (манганин) обладает высоким электросопротивлением, мало изменяющимся с изменением температуры. Поэтому его применяют для изготовления реостатов и пр. Марганец вводят в бронзы и латуни. Диоксид марганца используется как катализатор и наряду с другими соединениями (КМПО4 и т. п.) как окислитель. [c.343]

    Окись бериллия, как и сам металл, находит применение в ядерной технике в качестве замедлителя и отражателя нейтронов и как конструкционный материал, особенно в высокотемпературных реакторах. В традиционных областях применения значение окиси бериллия не только сохранилось, но и увеличилось как огнеупорный материал ВеО в ряде случаев незаменима. Это касается, в частности, изготовления тиглей для плавки металлов (Ве, U, Th, Ti), где используется такое уникальное свойство ВеО, как необычайно высокая теплопроводность наряду с огнеупорностью. Широко используется при конструировании индукционных печей и вакуумных нагревательных приборов. Весьма перспективным огнеупорным материалом является пористая керамика из окиси бериллия, получаемая пенометодом [51] и выдерживающая температуру 1750°. В связи с высокой устойчивостью к тепловому удару ВеО находит применение в авиации для изготовления лопастей газовых турбин и деталей реактивных двигателей. Важная область применения окиси бериллия — получение медно-бериллиевой лигатуры, используемой в производстве бериллиевых бронз. Применяется ВеО и как катализатор в некоторых органических синтезах. [c.188]

    Алюминиевые бронзы морозостойки, не магнитны и не дают искры при ударах. Отрицательным свойством этих сплавов по сравнению с оловянными бронзами является повышенная величина усадки при затвердевании, склонность к трещинообразованию, газонасыщению и окислению при неблагоприятньтх условиях плавки и заливки. Они трудно поддаются пайке мягкими и твердыми припоями. Поэтому применяются для литья деталей простых форм. [c.93]

    ЛИГАТУРА (лат. ligatura — связка) — вспомогательный сплав, добавляемый в жидкие металлы или сплавы, чтобы изменить их хим. состав и улучшить свойства. Легирующий элемент усваивается из Л. лучше, чем при введении его в чистом виде. Л. получают сплавлением необходимых компонентов или восстановлением их из руд, концентратов или окислов. Наибольшее применение Л. находят в черной металлургии, гл. обр. для модифицирования и легирования сталей и чугунов. Использование в качестве модификаторов спец. Л. (преим. кремний — магний — железо и кремний — кальций — магний— церий — железо) дает возможность получать высокопрочный чугун с шаровидным графитом, значительно превосходящий по физико-мех. св-вам обычный серый чугун с пластинчатым графитом и не уступающий сталям некоторых марок. Л. добавляют непосредственно в плавильные агрегаты или в ковш. Большое значение имеют Л. в произ-ве алюминия сплавов, меди сплавов, цинка сплавов, магния сплавов, бронз, латуней и др. цветных сплавов, где служат промежуточными сплавами, вводимыми в осн. сплав в процессе плавки. Так, кремний, марганец, медь и др. элементы вводят в расплавленный алюминиевый (основной) сплав в виде предварительно сплавленных Л., напр. алюминий — кремний (20—25% Si), алюминий — марга- [c.700]

    СУРЬМЯНИСТАЯ БРОНЗА — бронза, осн. легирующим элементом которой является сурьма. Относится к литейным бронзам. В СССР изготовляют С. б. четырех марок (табл. 1, 2). Структура С. б.— двухфазная. Альфа-фаза С. б., богатая медью, является твердым, раствором меди, сурьмы и никеля. Бета-фаза состоит из металлического соединения СизЗЬ, к-рое играет роль твердой составляющей. С. б. мало окисляется при литье. Отличается хорошими антифрикционными (из-за наличия двух фаз различной твердости) и мех. св-вами. Антифрикционные св-ва улучшает свинец. Добавки никеля, ципка и фосфора улучшают мех. св-ва и коррозионную стойкость. С. б. выплавляют в индукционных печах, в печах типа АЯКС, ДМК и др. Во избежание образования в отливке газовых раковин и трещин плавку ведут в слабоокислительной среде, используя предварительно прокаленные шихтовые материалы. С. б. ирименяют вместо оловянистой бронзы для изготов.тения подшипников, червяч- [c.487]

    Для экспрессного контроля содержания хрома в хромистой бронзе по ходу плавки нами был применен отечественный 36-канальный фотоэлектрический спектрометр ДФС-10. Пробами служили диски, отлитые в массивные чугунные изложницы открытого типа (рис. 1). Воздействию разряда подвергалось-плоское малое основание диска после удаления с него коркового слоя толщиной 1—2 мм [1]. Изучение макрошлифов показало, что эта форма пробы обеспечивает направленный рост мелкозернистых столбчатых кристаллов перпендикулярно обыскри-ваемой поверхности, спектральная проверка подтвердила однородность проб. [c.22]

    Зазор между кожухом и каркасом на участке, где нет огнеупорной кладки, заполняют теплоизоляционным материалом. Каркас из немагнитного металла для плавки бронзы и латуни набивается массой, состоящей из 96% мелкоизмельченно-го. кварца, 2 /о буры, 1,5°/о дробленого стекла и 0,5 /о глины для плавки никелевых сплавов —96,5 /омагнезита 3 /о буры и 0,5% дробленого стекла. Сердечники (магнитопроводы) собирают из листов трансформаторной стали. Электрический ток напряжением 220 в подается к печи по гибкому медному кабелю. Производительность печи порядка 20 т в сутки при трехсменной работе. [c.235]

    Полиалкилиден [(СНз)СН] , где п = 200—1000, представляет собой твердое, прозрачное, стеклообразное плавкое инертное вещество. Полимеры этого типа получают полимеризацией 1-ди-азоалкана с выделением Na катализатор — безводный uS04, u-бронза или Си-порошок. [c.194]

    Применение. Важной областью применения Б. являются различные сплавы, в к-рые Б. вводится как легирующая добавка. Большое значение имеют сплавы Си—Ве, т. и. бериллиевые бронзы, содер-н ащие до 2,5% Ве с добавками Ni и Со (0,2—0,5%) приобретающие после закалки и отпуска (старения) высокую прочность и твердость, а также хорошую электропроводность, теплопроводность и коррозионную стойкость (см. Меди сплавы). Практич. применение нашли также сплавы Ni с 2—4% Б. Эти сплавы по сопротивлению коррозии, прочности п упругости сравнимы с высококачественнгдми нержавеющими сталями, но превосходят последние по твердости, способности к ковке и термич. обработке. К улучшению свойств приводит введение Б. и в железные сплавы. Ничтоншые добавки Б. к магниевым сплавам повышают их сопротивление коррозии, сильно уменьшают окисляемость сплавов во время плавки и разливки. Сплавы о Б. находят применение в самолетостроении, электротехнике и др. В конструкциях атомных реакторов Б. благодаря малому поперечному сечению захвата тепловых нейтронов используется как замедлитель и отражатель нейтронов. [c.212]

    Пористые материалы. Регулированием зернистости исходных порошков и режимов прессования и спекания можно создать изделия с дисперсной и равномерно распределенной пористостью, что недостижимо методами плавки. К важнейшим изделиям из металлокерамич. пористых материалов относятся пористые подшипники, металлич. фильтры и др. Пористые подшипники производят из бронзы, железа, иногда на алюминиевой основе. Смесь исходных порошков и графита (2—3%) прессуют до заданной пористости (25—40%) и спекают в условиях, тормозящих усадку (см. ниже), после чего изделия калибруют в прессформе. Включения графита создают сухую смазку при эксплуатации подшипника. Поры подшипников пропитывают маслом или нек-рыми пластмассами. Такие самосмазывающиеся подшипники работают без внешней смазки, что важно в узлах машин, где затруднена подача смазки, или при опасности загрязнения продукции (в пищевой, текстильной пром-сти и др.). [c.135]

    Другой способ удаления шабючов состоит в расплавлении их включением индуктора печи под напряжение при первой плавке. Для этого шаблоны должны изготовляться из металла нли сплава, желательно из того же, который будет выплавляться в печи, или близкого к нему по составу (например, шаблон печн для плавки латуни ]1ли бронзы может изготовляться из меди). Нагрев и расплавление литого шаблона во избежание растрескивания подового камня ведется по определенному графику и длится около суток. В некоторых случаях шаблоны изготовляются сварными из листовой стали (толщиной около 3 [c.309]


Смотреть страницы где упоминается термин Бронзы плавка: [c.156]    [c.325]    [c.317]    [c.178]    [c.129]    [c.317]    [c.630]    [c.525]    [c.645]    [c.112]    [c.665]    [c.492]    [c.311]    [c.332]   
Справочник механика химического завода (1950) -- [ c.464 , c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Бронзы

Плавка



© 2024 chem21.info Реклама на сайте