Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генная локализация в хромосомах III

Рис. 3.27. Цитологическая карта генов хромосомы 1 человека. Объяснение сокращений дано в табл. П.9.5. Гены, локализация которых в первой хромосоме не подтверждена, обозначены курсивом. Рис. 3.27. <a href="/info/700553">Цитологическая карта</a> <a href="/info/1325169">генов хромосомы</a> 1 человека. Объяснение сокращений дано в табл. П.9.5. Гены, локализация которых в первой хромосоме не подтверждена, обозначены курсивом.

    Локализация генов в хромосомах была установлена, однака не все биологи были так уверены, как Вейсман, в их чисто хими- [c.34]

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]

Таблица III.3. Локализация некоторых генов в хромосомах человека Таблица III.3. Локализация <a href="/info/1435353">некоторых генов</a> в хромосомах человека
    Изучение других организмов привело к сходным результатам. При экспериментальном скрещивании разнообразных организмов обнаружилось, что некоторые группы сцепления больше других (т. е. в них входит больше генов). Изучение хромосом этих организмов показало, что они имеют разную длину. Морган доказал наличие четкой связи между этими наблюдениями. Они послужили дальнейшими подтверждениями локализации генов в хромосомах. [c.196]


    Сцепление локализация генов на хромосомах [c.191]

    Локализация гена в хромосоме [c.19]

    Транспозиции IS-элементов не сопряжены с их исключением из мест исходной локализации в плазмидах или хромосоме при транспозиции IS-элемент удваивается и одна его копия остается на прежнем месте, а другая попадает в новый локус (местоположение гена в хромосоме или плазмиде). Таким образом транспозиции этого элемента сопряжены с репликацией (удвоением) его ДНК. [c.79]

    Все эти данные указывают на то, что существуют особые гены, определяющие свойства клеток имагинальных дисков, ио ничего не говорят о локализации этих генов в хромосомах и о механизме их действия. Но поскольку генетика дрозофилы хорошо изучена, удалось все же локализовать некоторые из этих генов и приступить к экспериментальному анализу их функций. [c.80]

    ЛОКАЛИЗАЦИЯ МУТАНТНЫХ ГЕНОВ В ХРОМОСОМАХ У ДИПЛОИДНЫХ РАСТЕНИЙ [c.130]

    ВОЗМОЖНОСТЬ составить карты локализации известных мутантных генов в хромосомах дрозофилы. Определяя частоту расщепления сцепленных генов среди потомства мух с самыми разнообразными мутациями, Морган и его сотрудники смогли построить генетические карты четырех хромосом дрозофилы (фиг. 12). На этих картах показано положение в хромосомах известных в то время мутантных генов. [c.30]

    Хромосомные мутации можно классифицировать следующим образом А. Изменения в структуре хромосом. Такие изменения могут затрагивать чжАО генов в хромосомах (делеции и дупликации рис. 21.1) и локализацию генов в хромосомах (инверсии и транслокации рис. 21.2). [c.33]

    Применение технологии рекомбинантных ДНК открывает широкие перспективы С помощью этих методов клетки бактерий, дрожжей и млекопитающих могут быть преобразованы в фабрики для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков или использовать их в качестве лекарственных средств. Кроме того, на технологии рекомбинантных ДНК основано получение высокоспецифических ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями. [c.247]

    Большинство хромосомных аберраций не нарушает структуры генов, например при трисомии целостность всех генов утроенной хромосомы не нарушается, изменяется лишь их число. Тем не менее при этом наблюдаются резкие нарушения эмбрионального развития. Можно предположить, что в этом случае нарушены механизмы регуляции. Более того, большинство клинических симптомов у больных со структурными аберрациями хромосом, связанными с утратой генетического материала (делеции, кольцевые хромосомы), мало отличается от симптомов при многих трисомиях. Характер большинства из этих симптомов не зависит от локализации структурного дефекта. Логично предположить, что фенотипические отклонения обусловлены скорее дисбалансом экспрессии генов в эмбриогенезе, чем утратой определенных генов. Изучение развития зигот с хромосомными аберрациями может быть полезным для выяснения нормального хода эмбриогенеза. [c.133]

    Степень надежности установленной региональной локализации генов в хромосомах или сцепления между двумя локусами оценивается по четырем градациям  [c.247]

    Еще одним этапом развития современной генетики человека явилось картирование и локализация генов в хромосомах человека. Достижения цитогенетики, генетики соматических клеток, увеличение числа генетических маркеров способствовали успешному изучению групп сцепления. В настоящее время у человека установлено 23 группы сцепления. Эти данные нашли непосредственное применение в диагностике наследственных заболеваний и медико-генетическом консультировании. [c.8]

    В отличие от классической, в новой генетике изменился подход к анализу генов. В классической генетике последовательность была следуюшей идентификация менделирующего признака локализация гена в хромосоме (или группе сцепления) первичный продукт гена ген. В современной генетике стал возможным и обратный подход выделение гена секвенирование первичный продукт, в связи с чем был введён новый термин для определения такого направления исследований обратная генетика или генетика наоборот . [c.19]

    Картирование — определение локализации гена на хромосоме. [c.353]

    Изучение структур геномов различных организмов поначалу создало представление о незыблемости локализации тех или иных генов в хромосомах. Это представление было пересмотрено после открытия Б. Мак Клинток, которая в опытах с кукурузой показала, что гены могут перемещаться в пределах генома и влиять на механизмы экспрессии. В дальнейшем было установлено, что это явление характерно для многих эукариотических и прокариотических клеток. Транспозон Е. соИ представляет собой олигонуклеотид, включающий в себя ген фермента транспозазы, ответственной за перемещение транспозона, а также короткие концевые нуклеотидные последовательности. Транспозоны эукариотических клеток гораздо больше и включают в себя набор различных генов. Внутригеномное перемещение и встраивание транспозонов требует разрыва и последующего сращивания цепи ДНК. Репликация транспозона в одном сайте цепи, а затем перемещение и репликация в другом создают благоприятные возможности для дальнейших гомологичных рекомбинаций в клетке. Следует отметить, что транспозоны, встраиваясь в случайные сайты хромо- [c.456]


    Наша главная задача состояла в том, чтобы раскрыть сущность и глубину экспериментальных подходов науки, которая бьша названа молекулярной генетикой, применительно к эукариотическим организмам. Чтобы решить эту задачу, а также облегчить понимание материала читателями, обладающими ограниченным объемом знаний по биохимии, клеточной биологии и генетике, мы постарались изложить основы этих направлений биологии двумя способами. Во-первых, в гл. 1, 2 и 3 суммирована наиболее важная информация о структуре ДНК, РНК и белков о различных клеточных процессах, протекающих с участием ДНК (репликация, репарация и рекомбинация) об основных механизмах транскрипции, трансляции и контроле экспрессии генов. Читатели, хорошо ориентирующиеся в данных вопросах, могут пропустить эти главы. Во-вторых, во введениях к частям I, II и III даны исторические экскурсы и общий взгляд на проблемы, изложенные в главах, составляющих эти части. В них не говорится детально о том, как были открыты и доказаны те или иные положения, а делается попытка объяснить, как на основе различных исследований в области биохимии, генетики, микробиологии, клеточной и эволюционной биологии бьш выстроен интеллектуальный каркас современной биологии. Так, во введении, предваряющем гл. 1, 2 и 3, прослеживается исторический путь, приведший нас к современному взгляду на наследственность. Мы знакомимся с концепцией гена, трансмиссией и сегрегацией генов, с логическим переходом от первичного картирования генетических детерминант к точной локализации генов на хромосоме, с идентификацией генов как дискретных участков молекулы дезоксирибонуклеиновой кислоты и информационными взаимоотношениями между ДНК, РНК и белками. [c.6]

    Хромосомную карту Е.соИ можно получить, если смешать клетки Hfr и р- и дать возможность конъюгации происходить в течение опре-деленного интервала времени, а затем клетки интенсивно перемешать, например, в гомогенизаторе Уоринга. В результате этой процедуры все конъюгационные мостики разрушаются и процесс спаривания бактерий прерывается. Спаривание прерывают через разные промежутки времени и определяют наличие в бактериях-реципиентах генов, перенесенных иа Клеток донорного штамма. При помощи этого метода было показано,, что для полного переноса хромосомы при 37 °С требуется приблизительно 100 мин и что локализацию любого гена в хромосоме можно приблизительно установить по времени, необходимому для переноса этого гена в клетку-реципиент. В действительности, однако, все выглядит несколька сложнее. Поскольку полный перенос всей хромосомы осуществляется редко, в опытах обычно используются разные подштаммы Е. соИ К-12, У которых фактор F расположен в разных местах во всех случаях гены,, локализованные по часовой стрелке сразу же за точкой интеграции (рис. 15-1), переносятся быстро и с высокой частотой. [c.191]

    Несмотря на то что сейчас выяснены лишь некоторые ключевые моменты тех химических процессов, которые лежат в основе всех этих явлений, использование температурочувствительных мутантов и тестов на комплементацию поможет установить суммарное число генов, принимающих участие в этих процессах, а также локализацию этих генов в хромосоме Е. oli. В ряде случаев это может способствовать более полному пониманию биологического явления. [c.255]

    Наиб, изучена мол. организация т.наз. мобильных дис-пергир. генов (МДГ) дрозофилы, построенных также по типу транспозонов. Известно неск. семейств МДГ. Все они имеют много общих св-в это множественные видоспецифичные активно транскрибируемые гены, локализация к-рых на хромосомах варьирует не только у разных линий дрозофилы, но даже у разных особей одной линии. Все они содержат 5-7 тью. пар нуклеотидов и повторяются в геноме от 10 до 200 раз. Отличит, особенность МДГ-присутствие на их концах повторяющихся нуклеотидных последовательностей (250-500 пар), имеющих прямую ориентацию. Считается, что МДГ способны перемещаться в результате синтеза РНК-копии и последующей ее обратной транскрип- [c.80]

    Таким образом, на практике стремятся осзтцествлять соматическую гибридизацию для заметного расширения рамок скрещивания, для включения (переноса) внеядерных генов и их функций в гибридное потомство и для локализации генов в хромосомах [c.183]

    Ген, ответственный за цветовую слепоту (дальтонизм), был локализован в Х-хромосоме в 1911 году. Особенности наследования генов, сцепленных с Х-хромосомой, позволили отнести к этой группе сцепления более чем 100 локусов. Хромосомная локализация аутосомных генов была впервые проведена в 1968 году. Определено расположение локуса, кодирующего антигены групп крови Даффи, которые, подобно антигенам группы ABO и другим антигенам крови, находятся на поверхности эритроцитов. Сравнение наследования изучаемого гена с распределением аберрантной хромосомы 1 показало, что он локализован в этой хромосоме. С тех пор на основании анализа родословных определены группы сцепления для 70 генов человека. Картирование многих из этих генов стало возможным после того, как было показано их сцепление с другими генами, локализацию которых удалось установить методами генетики соматических клеток. Примером этого служит картирование гена резус-фактора, впервые открытого в 1939 году. В 1971 г. изучение родословных показало, что ген Rh сегрегирует сцепленно с геном РЕРС, кодирующим пептидазу С. Годом позже при изучении соматических клеток ген РЕРС был локализован в хромосоме 1. Таким образом, стала известной группа сцепления и для гена Rh, кодирующего резус-фактор. В настоящее время картировано около 500 аутосомных генов, причем 100 из них картировано за последние 12 месяцев. Подавляющее большинство этих генов локализовано методами генетики соматических клеток. [c.294]

    Этот факт имеет огромное значение, но он не представляет собой чего-либо нового или особенного, будучи прямым следствием локализации генов в хромосомах и поведения хромосом в мейозе. На фиг. 8 показано, что гомологичные хромосомы конъюгируют попарно во время мейоза, а затем разделяются и направляются к противоположным полюсам в результате одна дочерняя клетка получает одну хромосому данной па1ры, а другая — другую. Если изучаемая особь [c.43]

    Теория гена стала успешно разрабатываться после 1910 г., когда в результате работ с плодовой мушкой (Drosophila), выполненных Томасом Хантом Морганом и его сотрудниками (в частности, А. Г. Стертеван-том, Кальвином Бриджесом и X. Дж. Меллером), удалось определить порядок локализации многих генов в хромосомах этого организма. В последующем успешными оказались работы исследователей (Дж. У. Бид- [c.684]

    Заметим, что феноменологическая трактовка мутаций уже глубоко чужда и противоречит макродискретной генетике, которая не удовлетворяется внешними данными и ставит во главу угла поиск и определение материальной базы. Это касается расщепления, субстрат которого был найден в хромосомах, что повлекло за собой изучение хромосом (генетическое и цитологическое). При исследовании обмена генов был найден аппарат кроссин-говера, который положил начало определению локализации генов в хромосоме. С равной точностью был изучен аппарат возникновения делеций, инверсий, нерасхождения и многих других макродискретных явлений, причем их ясность и наглядность в большой мере обусловлены нефеноменологической познавательной установкой. [c.8]

    Исходя из представления о том, что гены одной хромосомы сцеплены между собой, Стертевант (Sturtevant) предложил использовать частоту рекомбинации в качестве единицы расстояния на карте для измерения относительной локализации генов. Эта единица расстояния выражается как процент рекомбинации  [c.15]

    В том случае, если локализация гена внутри хромосомы известна, для ее обозначения используют индекс полосы. Например, локализация гена ЕЗВ, кодирующего эстеразу О, обозначается 13р14-четвертая полоса первого района короткого плеча тринадцатой хромосомы. Локали- [c.300]

    У млекопитающих наиболее тщательному исследованию была подвергнута Х-хромосома, поскольку ее можно анализировать в гомозиготном и гемизиготном состоянии, т. е. в отсутствие одного из гомологов. У всех изучавшихся высших млекопитающих, а также кенгуру, сцепленными с Х-хромосомой оказались гены GGPD, HPRT, GLA, PGK. Другие группы сцепления в процессе эволюции были перемешаны, хотя между близкородственными видами сохраняются точные гомологии. В табл. 21.1 перечислены гены первой хромосомы человека, для которых определена локализация в хромосомах некоторых других млекопитающих. У крупных человекообразных обезьян и у некоторых других приматов эти гены также локализованы в первой хромосоме, но у зеленой мартышки некоторые из них (а именно присутствующие в коротком плече р первой хромосомы человека) транслоцированы на хромосому 6, тогда как другие (из длинного плеча q) картируются в первой хромосоме. Данные табл. 21.1 указывают на существенные различия в хромосомной организации грызунов и приматов. Этот же вывод еле- [c.57]

    Сортировка X- и Т-хромосом. В работе [333, 330] осуществлена препаративная проточная цитофотометрия X- и У-хромосом человека. Х-хромосома была выделена из клеточной линии с кариотипом 48,ХХХХ с помощью однолучевой сортировки. Этот материал был использован для приготовления библиотеки хромосомной ДНК после обработки рестриктазой ЕсоК1 и клонирования в фаге (см. разд. 2.3,2,2), У-хромосома отобрана с помощью двулучевого сортера из материала гибридной клеточной линии китайский хомячок X человек . Получение клеточных гибридов будет описано в разд, 3,4,3 в связи с локализацией генов в хромосомах. Важная особенность гибридных клеток человек х мышь или [c.132]

    Если при митотических делениях диплоидных ядер теряется одна хромосома (2/г — 1), то возникающее анэуплоидное ядро становится нестабильным и последовательно теряет все хромосомы одного набора, пока не установится стабильное гаплоидное число. При этом хромосомы разных пар ведут себя независимо, а гены одной хромосомы обнаруживают абсолютное сцепление. Поэтому для локализации неизвестного гена в уже маркированной группе сцепления необходимо установить, с какими из маркеров постоянно ассоциирован исследуемый ген при гаплоидизации. [c.189]

    У диплоидных высших растений моносомия обычно летальна, несмотря на сохранение второго гомолога. Жизнеспособны моносомики у аллополиплоидов. Это объясняется гомеологией хромосом разных наборов аллополиплоида, как это, например, наблюдается у гексаплоидной пшеницы. Такую особенность аллополиплоидов используют для локализации генов в хромосомах [c.364]

    У тритона Notophthalmus virides ens имеются примерно 700 гистоновых генов, локализация которых. по крайней мере в некоторых аспектах, не соотносится с генной экспрессией. Гены пяти гистонов объединены в сегментах ДНК длиной 9 т. п. н., каждый из которых входит в состав длинных тандемных повторов неродственных последовательностей в одном из плечей хромосомы. Как правило, группы гистоновых генов разделены участками из тандемных повторов длиной от 50 до 100 т.п.н. Аналогичные тандемные повторы встречаются и в области центромер (разд. 9.4.в). [c.183]

    Транскрипционные факторы семейства SOX обнаружены в спинном и головном мозге плода. Более детально их функция ещё не выяснена, хотя уже известна их локализация в хромосомах SOX2— хромосома 3 SOX 3— хромосома X SOX 4— хромосома 6). Описан ген SOX9 (хромосома 17q), мутации в котором ведут к кампомелической дисплазии. [c.63]


Смотреть страницы где упоминается термин Генная локализация в хромосомах III: [c.215]    [c.215]    [c.19]    [c.277]    [c.192]    [c.45]    [c.46]    [c.9]    [c.9]    [c.3]    [c.32]   
Биология Том3 Изд3 (2004) -- [ c.188 , c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте