Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетика новая

    По мере того как увеличивается население Земли и развивается промышленность, все более серьезной становится проблема охраны окружающей среды, В решении такого рода задач биотехнология будет играть все возрастающую роль, в частности, в том, что касается разработки новых или усовершенствования существующих способов переработки отходов. Такие методы и системы будут создаваться в значительной мере на основе исследований в области химической инженерии, но свое веское слово скажут также физиологи микроорганизмов, биохимики и генетики. Новейшие процессы переработки необычных отх одов [c.26]


    В целом это делает все более актуальным подробный анализ запросов селекции, способной поставить перед мутационной генетикой новые задачи, решение которых принесет пользу обеим наукам. Так, в частности, возможно более полное определение [c.3]

    Методы, связанные с использованием рекомбинантных молекул ДНК, дают бактериальной генетике новый мощный инструмент, значение которого трудно переоценить. Быстро меняющиеся методические подходы, их специальный характер и федеральные ограничения не позволяют включить эти методы в настоящее руководство. Мы отсылаем читателя, интересующегося этими вопросами, к тому Методов энзимологии , посвященному рекомбинантной ДНК [6]. [c.6]

    Книга является одной из первых в мировой литературе монографий, посвященных компьютерной генетике - новой дисциплине, сформировавшейся в последние 10 лет на стыке молекулярной биологии и математики. Материал книги основан на современных достижениях компьютерного анализа первичных структур биополимеров и включает основные результаты ведущих советских и зарубежных специалистов. В монографии большое внимание уделено проблем ам поиска гомологичных фрагментов статистическому анализу последовательностей локализации функциональных сигналов и кодирующих областей построению физических карт предсказанию вторичной структуры РНК пакетам программ анализа структуры биополимеров и банкам данных в молекулярной биологии. [c.2]

    С каждым годом все большее число разнообразных процессов микробиологического синтеза реализуется в промышленных условиях, Промышленная биотехнология становится новым перспективным направлением, открывающим необозримые горизонты использования продуктов биосинтеза микроорганизмов в народном хозяйстве. Увеличивается число биохимических заводов и комбинатов по производству уже освоенной продукции микробиологического синтеза — ферментных препаратов, витаминов, кормовых антибиотиков, аминокислот, микробиологических препаратов для борьбы с вредителями растений, кормовых дрожжей и др. Широким фронтом ведутся исследования по получению и технологии производства новых биологически активных препаратов, разрабатываемых с использованием современных достижений молекулярной генетики и генной инженерии. К перспективным задачам промышленной биотехнологии относится также реализация микробиологических процессов, направленных на решение энергетической проблемы, в том числе производство биогаза, топливного этанола, метана, топливного водорода с помощью фотосинтезирующих микроорганизмов и др. [c.3]


    Химия пищи, микробиология и биотехнология в настоящее время стали составной частью пищевой технологии, основой интенсификации производственных процессов. В связи с этим разработка на базе генетики и генной инженерии основ пищевой микробиологии позволит получать такие виды микроорганизмов и их бак-концентратов, которые будут способствовать созданию новых и интенсификации традиционных производств высококачественных пищевых продуктов. [c.1326]

    Вплоть до середины XX в. развитие биологии происходило путем ступенчатой редукции - последовательного перехода от изучения более сложных биосистем к изучению менее сложных, в соответствии с субординационной структурной организацией живой природы. В своем движении от высшего к низшему, от функции к структуре биология, наконец, подошла к исследованию простейшего уровня биологических систем - их молекулярного "дна . С появлением молекулярной биологии и ее составной части - молекулярной генетики, наука обрела качественно новое представление о единстве, целостности и субординационной взаимосвязи [c.9]

    Ранее было отмечено, что структурная организация живой и неживой природы построена согласно принципам унификации и комбинации и включает явления трех типов. Оба принципа (редукционизма и холизма) оказались в основе научного поиска и нашли отражение в логике, как в науке о закономерностях и формах научного и философского мышления, так и в методе анализа индуктивного и дедуктивного способов рационалистической и эмпирической деятельности человека. На индуктивном способе мышления основывается разработка целого ряда научных дисциплин, например квантовой механики атомов и квантовой химии молекул. Фундаментальные положения этих наук базируются в основном на результатах изучения соответственно простейшего атома (Н) и простейшей молекулы (Н2), а также ионов Н , ОН . Тот же способ мышления в биологии лег в основу исследований, приведших к становлению и развитию формальной и молекулярной генетики, цитологии, молекулярной биологии, многих других областей. При дедуктивном способе мышления, ядро которого составляет силлогистика Аристотеля, новое положение выводится или путем логического умозаключения от общего к частному, или постулируется. Классическим примером дедукции может служить аксиоматическое построение геометрии. Мышление такого типа наглядно проявилось в создании периодической системы элементов - эмпирической зависимости, обусловливающей свойства множества лишь одним, общим для него качеством. Д.И. Менделеев установил, что "свойства элементов, а потому, и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от их атомного веса" [21. С. 111]. Тот же подход лежит в основе построения равновесной термодинамики и статистической физики. Оба способа мышления, индуктивный и дедуктивный, диалектически связаны между собой. Они вместе присутствуют в конкретных исследованиях, чередуясь и контролируя выводы друг друга. [c.24]

    Помимо связывания уже известных обобщений и предсказания новых, теории служат еще и третьей цели они часто позволяют перебросить мост между областями, в которых возможны эксперименты, и теми областями исследований, где нам приходится ограничиваться только чистыми наблюдениями. Это особенно важно в таких областях, как, например, астрофизика или генетика человека и животных. [c.21]

    В первом издании мы описали принципы и применение молекулярной биотехнологии в широком биологическом контексте - в той форме, которая представлялась нам наиболее интересной и информативной. С тех пор мы получили много полезных замечаний от наших коллег, аспирантов и студентов из разных стран. Стараясь сохранить прежний подход и в то же время удовлетворить пожелания многих читателей, мы обновили, расширили и существенно переработали нашу книгу. Мы надеемся, что нам удалось передать ту волнующую атмосферу, в которой совершаются открытия в молекулярной биотехнологии, и в то же время ясно изложить ее основы, разъяснить смысл современных открытий и то, как их можно использовать для производства товаров и услуг . В книге появилась новая глава, где рассмотрены микроорганизмы, обычно использующиеся в молекулярной биотехнологии. Кроме того, отдельная глава посвящена описанию основ молекулярной биологии. Значительно расширены главы по молекулярной генетике человека, генной терапии, биотехнологии растений, охватывающие самые последние достижения в этих областях. Пересмотрены главы, посвященные диагностическим системам и вакцинам. Кроме того, примерно в 1,5 раза увеличено число рисунков и таблиц, обновлен и расширен словарь терминов. Как мы надеемся, это позволит [c.7]

    Очень редко новые научные дисциплины возникают на пустом месте как правило, их фундаментом служат различные области науки. Что касается молекулярной биотехнологии, то ее биотехнологическая составляющая относится к сфере промышленной микробиологии и химической инженерии, а молекулярная - к областям молекулярной биологии, молекулярной генетики бактерий и энзимологии нуклеиновых кислот (табл. 1.1). В широком смысле молекулярная биотехнология пользуется достижениями самых разных областей науки и применяет их для создания самых разных коммерческих продуктов (рис. 1.2). [c.19]


    Применение набора зондов, специфичных в отношении полиморфных участков ДНК, для анализа ДНК членов родословных с большим числом поколений откроет новые горизонты в генетике человека . [c.458]

    С самого начала своего существования HGP должна была решать этические, правовые и социальные проблемы, связанные с картированием и секвенированием генома человека, вырабатывать стратегию, тактику и разрабатывать законопроекты, гарантирующие ответственное использование информации по генетике человека. На самом деле HGP не ставит каких-либо принципиально новых этических, правовых или социальных вопросов, которые не возникали бы при проведении медико-генетических исследований в целом. Однако реализация HGP неизбежно приведет к идентификации большого числа генов различных заболеваний и к определению последовательности многих из них, и эта [c.478]

    Микробиологическое выщелачивание может использоваться для извлечения металлов и неметаллов как из бедных, так и богатых материалов, в частности сульфидных. Для его осуществления не требуется больших капиталовложений и эксплуатационных затрат. Процессы осуществляются при обычных температуре и давлении, просты в управлении и неопасны для окружающей среды. Однако применение микробиологического выщелачивания при переработке руд, в том числе в химическом обогащении, требует решения ряда весьма сложных научных и научно-технических проблем. К ним следует отнести использование генетики и селекции микроорганизмов для получения культур, имеющих значительно большую активность, чем применяемые в настоящее время. Необходимо изыскание новых видов микроорганизмов, способных окислять и растворять минералы. Крайне важным является изучение рациональных комбинаций химических, микробиологических и других методов, пригодных для промышленной технологии. [c.156]

    Селекция — наука о методах выведения новых форм организмов со свойствами, резко отличающимися от свойств исходного родительского типа. Задачей селекции является получение новых форм, превосходящих исходный материал по своему практическому значению. Вот почему генетика является основой для селекции. [c.109]

    Совсем недавно слово биотехнология отсутствовало в нашем языке вместо него мы употребляли слова промышленная микробиология , техническая биохимия и т. п. Новый термин, объединивший в себе все прежние названия, появился примерно 10 лет назад. Это незначительное на йервый взгляд событие нельзя сводить только к тому, что кому-то посчастливилось придумать удачное слово за ним кроются гораздо более глубокие причины. Биология, составляющая научную основу любых практических использований биологических процессов и систем, за последние несколько десятилетий сделала огромный скачок на пути познания жизненных явлений, и прежде всего в области микробиологии, энзимологии, молекулярной биологии и молекулярной генетики. Новые открытия объединили разрозненные прикладные направления, подвели под них единую фундаментальную основу. В результате биотехнология стала наукой о практическом использовании биологии в целом, а не отдельных ее ветвей, как это было прежде. В этом именно и заключается подлинный смысл явлений, отмеченных введением нового термина. [c.5]

    Согласно дарвиновской теории эволюции, для появления новых форм и видов необходимо длительное время. Этот факт согласуется с данными современных палеонтологических и геологических исследований. Действительно, между всеми существующими в настоящее время живыми организмами установлено молекулярно-эволюционное родство. Получение данных, позволивших сделать столь важные заключения, стало возможным благодаря появлению в конце 80-х гг. приборов для автоматического определения последовательности нуклеотидов в ДНК (ДНК-секвенаторы). Новая технология дала возможность генетикам и молекулярным биологам получать точную информацию о большом числе генов (о последовательности нуклеотидов в ДНК). Большая часть этих данных собрана в обширных общедоступных базах данных в Интернете, например в Genbank. Присуждение в 1993 г. Нобелевской премии по химии Кэри Маллису (Mullis) за открытие и разработку метода полимеразной цепной реакции (ПЦР) подчеркивает важность новых технологий в получении научного знания. Метод ПЦР используется с конца 1980-х годов. Он дает возможность увеличивать число копий отдельного участка ДНК в миллионы раз. После этого с помощью секвенатора можно легко определить порядок нуклеотидов А, G, С и Т в этом фрагменте (определения терминов даны в табл. 1.2 и в словаре терминов). Метод ПЦР стал для генетиков новым мощным телескопическим средством, позволяющим увидеть молекулярное строение и информационное содержание различных последовательностей нуклеотидов. Именно метод ПЦР, который можно назвать генетическим копированием , побудил к созданию книги и фильма Парк юрского периода , показав возможность (пока нереальную) того, что сохранившиеся древние ископаемые останки ДНК можно размножить, а затем с помощью клонирования воскресить вымерших животных. [c.31]

    Пришедшие в генетику новые методы позволили расширить знания о структуре генетического материала. По современным данным, он оказался намного менее статичен, чем представлялось раньше. Так, например, известны описанные Барбарой Мак-Клинток мобильные контролирующие генетические элементы в геноме кукурузы, способные перемещаться с одного гена на другой, увеличивая их нестабильность. Соматическими мутациями, связанными с присутствием мобильных контролирующих элементов, обусловлена мозаичная окраска початков у кукурузы. Найдены мобильные генетические элементы и у дрожжей. Позже было выявлено несколько классов мобильных генетических элементов у бактерий и показано, что они могут встраиваться во многие участки генома клетки хозяина. В зависимости от структуры мобильного генетическо- [c.58]

    Эта гипотеза не была новой. В кругах генетиков теоретического склада, ломавших голову над удвоением гена, она была в ходу уже лет тридцать. Суть ее состояла в том, что для удвоения гена требуется образование комплементарной (негативной) копии его, форма которой относится к исходной (позитивной) поверхности, как ключ к замку. Затем эта комплементарная (негативная) копия должна была служить формой (матрицей) для синтеза новой позитивной копии. Однако нескольким генетикам идея комплементарного копирования не импонировала. Ведущим среди них был Г. И. Мёллер, находившийся под влиянием нескольких известных физиков-теоретиков, особенно Паскуаля Иордана, которые считали, что существуют силы притяжения подобного к подобному. Однако Полингу этот прямой механизм внушал отвращение его особенно возмущало предположение, будто эта идея находит подтверждение в квантовой механике. Перед самой войной он предложил Дельбрюку, от которого узнал про работы Иордана, написать совместно с ним для журнала Сайенс статью с категорическим утверждением, что, согласно квантовой механике, механизм удвоения гена связан с синтезом комплементарных копий. [c.75]

    Вторая половина XX столетия характеризуется резко возросшим интересом к познанию механизмов жизнедеятельности. Эпоха наблюдения и достаточно поверхностного анализа мира животных, растений и микроорганизмоп сменилась периодом решительного проникновения на уровень молекулярных и межмолеку-лярных взаимодействий в живых системах, вторжением в биологию методов и подходов физики, химии и математики. Как следствие этого процесса началась постепенная дифференциация наук, изучающих материальные основы жизни стали одна за другой появляться новые дисциплины, отражающие различные уровни исследования живой материи, различные углы зрения, различные экспериментальные приемы и методологические концепции. Классическая биохимия, которой бесспорно принадлежит пальма первенства в симбиозе биологии и точных наук, постепенно уступала дорогу новым направлениям. Вначале, на волне революционных событий в физике, возникла биофизика, значительно окрепшая уже в предвоенный период. Конец этого этапа был ознаменован и резкой активизацией исследований в генетике. Однако наиболее серьезное наступление началось в начале 50-х годов, когда возникли молекулярная биология, рождение которой часто отождествляется с открытием двойной спирали ДНК, а также биоорганическая химия, первые победы которой по праву связывают с установлением структуры инсулина и синтезом первого пептидного гормона — окситоцина, [c.5]

    Важную роль в химизации играют продукты малой химии — химикаты-добавки, текстильно-вспомогательные вещества, красители, химические реактивы и т. п. От них во многом зависит качество текстильных материалов, кожи, меха, полиграфической продукции, бумаги, резины, строительных и лакокрасочных материалов. Так, применение текстильно-вспомогательных веществ различного назначения позволяет повысить яркость и устойчивость окрасок, снижает электризуемость, сминаемость текстильных материалов. Лакокрасочные покрытия придают изделию высокие декоративные свойства, защищают металл от коррозии. Высокочистая продукция обеспечивает потребности электронной, электротехнической, радиотехнической, медицинской промышленности. Новые области науки — такие, как молекулярная биология и генетика, биоорганическая химия, используют биохимические реактивы и препараты. Перед химической промышленностью стоит задача полного удовлетворения потребности в монокристаллах, ферритовых порошках, сегне-топьезоэлектрических материалах, люминофорах. [c.25]

    Описанная выше экспертная система для автомаческого проиэ-юдства новых знаний "о взаимосвязях между первичными и топологическими структурами белков" реализована в лаборатории теоре-[нческой молекулярной генетики ИЦиГ СО АН СССР [261. [c.185]

    ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ (ленная инженерия), создание с помощью биохим. и (или) хим. синтеза генетач. структур, способных размножаться и действовать в клетке-хозяине, изменять ее генетич. программу и синтезировать требуемые продукты, обычно белки. Возникла в 1972, когда была получена первая такая структура. Будучи новым этапом развития молекулярной генетики, Г. и. использует достижения микробиологии, биохимии, биоорг. химии и молекулярной биологии. [c.518]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    Генетическая инженерия — важнейший прогрессивный способ изменения генетической программы организма в целях создания высокопродуктивных штаммов промьпштенных микроорганизмов. Успехи современной генетической инженерии сушественно влияют на промышленную биотехнологию. Яркий пример больших возможностей генетической инженерии — создание во ВНИИ генетики и селекции промышленных микроорганизмов штамма Е. oli для получения треонина. В результате были изменены не только регуляторные свойства фермента аспартаткиназы, но и питательные потребности штамма. Введение в геном бактерии нового гена обеспечило бактерии возможность использования в качестве источника углерода сахарозу, основного дисахарида традиционного промышленного сырья — свекловичной мелассы. Перечисленные манипуляции наряду с амплификацией плазмид, содержащих оперон треонина, позволили значительно увеличить производительность штамма бактерии и получить за 40 ч ферментации 100 г L-треонина на 1 л культуральной жидкости. Учитывая исключительные способности штамма Е. соН к сверхсинтезу L-треонина, японская фирма Адзиномото приобрела в 1982 г. лицензию на использование российского штамма — продуцента треонина для организации собственного производства. [c.50]

    Технология рекомбинантных ДНК включает набор как новых методов, так и заимствованных из других дисциплин, в частности из генетики микроорганизмов. Эти методы существенно расширяют возможности генетических исследований. Используя технологию рекомбинантных ДНК, получают даже минорные клеточные белки в больших количествах и проводят тонкие биохимические исследования структуры и функций белков, а также осуществляют детальный химический анализ генетического материала. К наиболее важньпм методам биотехнологии рекомбинантных ДНК следует отнести следующие  [c.106]

    В настоящее время, когда эта цель достигнута, наступил период реализации приобретенного научного потенциала в изучении структурнофункциональной организации белков и в прикладных исследованиях. Сфера последних - почти все разделы молекулярной биологии и молекулярной генетики, а также фармакология, эндокринология и многие другие области научной медицины. Поэтому требуется разработка нового метода, который не уступал бы точности и надежности первого, но обладал бы большей эффективностью и автоматизмом. [c.591]

    В 1953 г. была расшифрована структура ДНК, и это выдающееся открьь тие положило начало новой науке - молекулярной биологии, которая тесно связана с биохимией. Кроме того, биохимия является основой таких биологических дисциплин как микробиология, вирусология, цитология, гистология, эмбриология, генетика, иммунология и др. Изучение биохимии необходимо сейчас многим специалистам медикам, экологам, биотехнологам, агробиологам. [c.3]

    Молекулярная биология занимает -особое место в развитии науки второй половины XX в. Именно ее рождение и последующий бурный рост выдвинули биологию в целом в ряды самых передовых и популярных наук, а XX в. стали иногда называть веком биологии . Возникнув как отрасль биохимии, молекулярная биология получила мощное развитие благодаря внедрению в нее вдей и методов генетики и физики. Открытый и сформулированный в 1953 г. принцип комплементарности в нуклеиновых кислотах, объяснив особенности структуры этих макромолекуляр-ных соединений и обладая предсказательной силой в отношении их функций, лег в основу нового направления науки. Огромное научное и методологическое значение молекулярной биологии состояло в том, что наиболее фундаментальное и таинственное свойство живой материи — воспроизведение себе подобного — оказалось возможным объяснить на молекулярном уровне. Молекулярная структура вещества, в котором записана (закодирована) генетическая информация, механизмы воспроизведения генетической информации в поколениях клеток и организмов и механизмы реализации генетической информации через биосинтез белков —вот три направления, по которым развивалась эта наука и где были сделаны решающие успехи. Кроме того, структура и механизмы функционирования белков стали также предметом молекулярной биологии. [c.3]

    В настоящее время перед биологической наукой поставлена задача — обеспечить преимущественное развитие научных исследований по следующим основным направлениям разработка методов генетической и клеточной инженерии, создание на их основе новых процессов для биотехнологических производств с целью получения принципиально новых пород животных, форм растений с ценными признаками разработка новых методов и средств диагностики, лечения и профилактики наследственных заболеваний разработка научных основ инженерной энзимологии разработка и внедрение новых биокатализаторов (в том числе иммобилизованных) и оптимизация с их помощью биотехнологических процессов получения химических и пищевых продуктов исследования структуры и функции биомолекул клетки изучение молекулярных и клеточных основ иммунологии, а также генетики микроорганизмов и вирусов, вызывающих заболевания человека и животных, создание методов и средств диагностики, лечения и профилактики этих заболеваний исследования молекулярно-биологиче-ских механизмов канцерогенеза, природы онкогенов и онкобелков, их роли в малигнизации клеток и создание на этой основе методов диагностики и лечения опухолевых заболеваний человека исследования проблем биоэнергетики, питания, психики и молекулярных основ памяти и деятельности мозга. Таким образом, можно наметить следующие главные направления развития исследований в области биологической химии на ближайшую и отдаленную перспективу, так называемые горизонты биохимии  [c.18]

    Книга состоит из четырех частей. В первой из них четко и ясно изложены основы молекулярной биологии, во второй речь идет о молекулярной биотехнологии микроорганизмов, в третьей - о биотехнологии эукариотических систем, Б том числе человека (молекулярная генетика человека и генная терапия). Особый интерес для российского читателя представляет четвертая часть, посвященная контролю и патентованию в области молекулярной биотехнологии. Эти вопросы почти не затрагиваются ни в учебниках, ни в образовательном процессе в нашей стране, хотя в биотехнологии, как и в любой прикладной науке, новые разработки дают дивиденды только в том случае, когда они защищены патентом. Авторы обсуждают законодательную базу использования генноинженерных продуктов в пищевой и фармацевтической промышленности, применения рекомбинантных организмов в сельском хозяйстве, нормативные акты, относящиеся к предварительным испытаниям этих организмов, требования, предъявляемые к ним при крупномасштабном применении. Детально рассматриваются правила патентования впервые секвениро- [c.5]

    Отметим несколько важных моментов, касающихся генетического сцепления и картирования генов. Во-первых, чтобы можно было оценить частоту новых генетических комбинаций (рекомбинантов), один из родителей должен быть гетерозиготен как минимум по двум локу-сам АВ/аЬ или АЬ/аВ). Во-вторых, дигетерози-готные генотипы должны существовать в двух конфигурациях (фазах). Если два сцепленных гена на каждой из хромосом представлены одним типом аллелей (т. е. оба доминантные, АВ, или оба рецессивные, аЬ), то такую конфигурацию называют фазой сцепления (г г/с-фазой). Если же два сцепленных гена на каждой хромосоме представлены разными типами аллелей (т. е. один доминантный, а другой рецессивный, аВ или АЬ), то конфигурацию называют фазой отталкивания (/и/)анс-фазой). В-третьих, рекомбинация между двумя генами происходит независимо от их фазы. С точки зрения генетики рекомбинация между генами, находящимися в дигомозиготном состоянии (т. е. АЬ/АЬ или АВ/АВ), не приводит к появлению новой генетической комбинации, и поэтому, даже если подобная рекомбинация происходит, ее невозможно обнаружить. В-четвертых, частота рекомбинации 0% означает полное сцепление, а 50% - что гены расположены либо на разных хромосомах, либо на одной хромосоме, но удалены друг от друга слищком далеко для выявления сцепления. Для рещения проблемы картирования двух сильно удаленных генов, расположенных на одной хромосоме, необходимо картировать гены, лежащие между ними, что позволит определить, образуют ли все они одну группу сцепления. [c.446]

    Бурное развитие молекулярной генетики человека, начавшееся в 1980-х гг., стало возможным благодаря новаторским идеям Д. Ботштейна, Р. Уайта, М. Скол-ника и С. Дэвиса. Они обратили внимание, что полиморфизм длины рестрикционных фрагментов (ПДРФ) человека порождает полиморфные аллели (маркерные локусы), поддающиеся картированию. Как писали авторы в своей статье, мы хотим предложить новый способ построения генетической карты сцепления человека. В его основе лежит создание при помоши технологии рекомбинантных ДНК случайных однокопийных ДНК-зондов, способных выявлять полиморфные нуклеотидные последовательности при гибридизации с индивидуальными ДНК, обработанными рестриктазой . Более того, они осознали, что, используя сцепление гена того или иного заболевания с маркерным локусом, можно определить хро- [c.458]

    При оценке возможностей нейрохимии прежде всего необходима осторожность. За последние четверть века несомненные успехи молекулярной биологии настолько повысили самонадеянность биохимиков, что некоторые из них уверовали в возможность разрешить биохимическими методами или на молекулярном уровне буквально все загадки живой природы. Так, при изучении механизма наследственности делались попытки рассматривать мозг человека как еще одну молекулярную головоломку. По мере того как решались основные проблемы молекулярной генетики и все меньше возможностей оставалось для новых фундаментальных открытий, ведущие специалисты в области молекулярной биологии стали сосредоточивать свои интересы на нейробиологии. Здесь, однако, молекулярный подход имеет ограничения. Я не хочу выступать в роли защитника некоего неовитализма, но описание ограничений и возможностей вейрохимии может стать, по-моему, хорошим способом дать определение этой научной дисциплины, а сопоставление молекулярной генетики с молекулярной биологией прекрасно это иллюстрирует. [c.7]

    С начала XX в. продолжается дальнейщая дифференциация микробиологии. От нее отпочковываются новые научные дисциплины (вирусология, микология) со своими объектами исследования, вьщеляются направления, различающиеся задачами исследования (общая микробиология, техническая, сельскохозяйственная, медицинская, генетика микроорганизмов). Перечисление достижений микробиологии XX в. в кратком очерке представляется необычайно сложным, в связи с чем фактически все последующее изложение материала (и то достаточно краткое и не затрагивающее всех направлений современной микробиологии) есть попытка охарактеризовать достижения в некоторых областях микробиологии на современном этапе. Вклад отдельных исследователей в решение определенных микробиологических проблем мы старались отмечать по мере изложения материала. [c.16]

    Биологическая химия в последние годы развивалась очень быстрыми темпами, чему способствовало совершенствование идеологии познания живой материи, а также применение новых весьма эффевсгивных приемов и методов. За этот период биохимия достигла больших успехов прежде всего в таких ее разделах, как молекулярная биология, биохимическая генетика, биоинженерия и др. Возникла необходимость в новом учебнике, отражающем достижения своего времени. Именно эту задачу призван решить настоящий учебник. [c.3]


Смотреть страницы где упоминается термин Генетика новая: [c.168]    [c.168]    [c.185]    [c.191]    [c.220]    [c.197]    [c.444]    [c.191]    [c.220]    [c.498]    [c.17]    [c.562]    [c.43]   
Генетика человека Т.3 (1990) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Век генетики

Генетика



© 2024 chem21.info Реклама на сайте