Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Млекопитающие эволюция III

    Например, переход к жизни в воздушной среде при метаморфозе амфибий и после окончания внутриутробного развития у млекопитающих связан с такими же, вероятно, изменениями гемоглобина, какие происходили при первичном завоевании суши позвоночными. Точно так же изменения в путях экскреции азота, происходящие в онтогенезе при выходе амфибий на сушу, должны быть аналогичны тем биохимическим адаптациям, которые осущестрлялись на заре эволюции наземных позвоночных. [c.378]


    Гены, кодирующие адаптивные белки, образование которых резко усиливается под влиянием разных факторов среды (повышение температуры, отравление металлами), содержат в составе промоторов дополнительные характерные короткие нуклеотидные последовательности. В ответ на повышение температуры или другие стрессы (например, отравление ядами) вырабатываются особые белки, получившие название белков теплового шока. Считается, что быстрое накопление таких белков в клетке обеспечивает физиологическую адаптацию к изменившимся условиям среды. Эти белки чрезвычайно консервативны, они мало менялись в эволюции. Например, белки, имеющие Мг = 70 ООО и образующиеся после теплового шока в клетках . соИ, растений, насекомых и млекопитающих, проявляют большую степень гомологии по аминокислотной последователь- [c.199]

    У некоторых групп животных имеются свойственные только им соединения — специфические ферменты, дыхательные пигменты, переносчики электронов и др. Даже гемоглобин у разных млекопитающих имеет свою специфику (меняются форма кристаллов, изоэлектрическая точка, соотношение метионина и цистина и др.). Отмечена направленная эволюция ряда биохимических систем, которая совершается с одинаковой последовательностью в разных филогенетических ветвях. Виды и роды по ряду биохимических параметров различаются между собой. [c.189]

    Постепенное обогащение атмосферы кислородом создало предпосылки для развития на поверхности Земли животной жизни. Около 350 млн. лет тому назад из животных форм океана развиваются первые предки современных нам земноводных, а около 250 млн. лет тому назад — пресмыкающихся. В эпоху наибольшего господства последних, приблизительно 150 млн. лет тому назад, появляются первые предки современных птиц и несколько позднее — млекопитающих. Дальнейшая эволюция животных форм земной поверхности идет в сторону постепенного вымирания земноводных и пресмыкающихся с заменой их более высокоорганизованными птицами и млекопитающими. В числе последних около 10 млн. лет тому назад развивается отдаленный предок современного человека. [c.571]

    М.— меньше чем Na, но больше всех других металлов. Биомасса содержит 40 млрд. т М. Морские водоросли содержат 520 мг% М. в сухом веществе, наземные растения 320, морские животные 500, наземные животные 100, бактерии 700. В процессе эволюции содержание М. в живом организме прогрессивно снижалось, если судить по изменению его содерл ания в бактериях (0,525 % на сухое вещество), покрытосемянных растениях (0,305 %) и млекопитающих (0,100%). [c.103]


    Способность человека оказывать влияние на эволюцию диких видов очень хорощо иллюстрируется изменением флоры Новой Зеландии. На этих островах вплоть до XIV в. не было ни людей, ни млекопитающих. В XIV в. на островах поселились племена маори. Европейцы появились на Новой Зеландии в XIX в., и вместе с ними появились культурные растения, домашние животные, крысы и кролики. Влияние всех этих организмов на растительность было почти катастрофическим, однако это нарушение сложившегося равновесия привело также к появлению очень большого числа гибридных форм, имеющих существенное значение для происхождения новых видов и биотипов. [c.391]

    Строение головного мозга легче понять, проанализировав его развитие у низших позвоночных и эмбриона человека. На рис. 17.23 представлено схематическое изображение головного мозга рыбы (его продольный разрез и вид сверху). Отчетливо видно, что мозг разделен на три основных отдела передний мозг, средний мозг и задний мозг. Эти же отделы прослеживаются у раннего зародыша человека. Однако в эволюции позвоночных наблюдается очень сильное увеличение размеров головного мозга по сравнению с размерами всего тела. Следует отметить, что такое увеличение обусловлено главным образом разрастанием переднего мозга. У млекопитающих передний мозг достигает наиболее крупных размеров и в отличие от прочих животных имеет извилины. Кроме того, его разрастание вверх, назад и в стороны привело к тому, что другие отделы мозга сверху уже не видны (рис. 17.24, Л). [c.306]

    В ходе дальнейшей эволюции у рептилий отмечалась тенденция к смещению конечностей вниз, так что туловище уже оказывалось заметно приподнятым над землей (рис. 18.3, Б). Такая поза облегчала животному передвижение, и тяжесть тела распределялась более равномерно между четырьмя относительно прямыми конечностями. Крайнего выражения эта тенденция достигла у млекопитающих (рис. 18.3, 5). [c.374]

    Эволюция ввда одновременно идет в разных направлениях, но с очень разной скоростью. Молекула гемоглобина человека, отделившегося от своего общего предка с гориллой несколько миллионов лет назад, отличается от молекулы гемоглобина горилл лишь одной кислотой из 147, входящих в состав бета-цепи гемоглобина. Но в десятки раз большее время потребовалось, чтобы из тапирообразной морды вырос хобот слона и сформировалась шея жирафа, открывшая виду, устремившемуся по пути ее удлинения, массу листвы, недоступной другим нелазающим млекопитающим. Эволюция вида идет направленно, по определенному видовому каналу. [c.46]

    Из второго закона термодинамики известно, что в изолированной системе происходят самопроизвольные процессы, возрастание энтропии. Это нетрудно понять, если рассматривать биосферу Земли, как многокомпонентную систему, и каждый ее вид (организм), как состояние этой системы. Тогда, в соответствии со вторым началом термодинамики, число микросостояний увеличивается. Иными словами, существует энтропия поликомпонентности (ЭПК), которая является одной из причин эволюции костного и живого вещества и Ифает созидающую роль. Система самопроизвольно стремится увеличить свою разносортность (усилить свое многообразие). Не исключено, что в планетарной биосфере и отдельных биоценозах ЭПК колеблется около постоянного значения и уничтожение высокоорганизованных компонентов. Например, уничтожение млекопитающих увеличит возникновение и рост микроорганизмов и низших существ. Примером является возникновение инфекционных заболеваний даже в благополучных государствах. Система продолжает увеличивать свою разносортность, но это уже происходит за счет повышения многообразия микроорганизмов и простейших форм. Это может вытеснить человека с лица Земли. К сожалению, существующие технологии в земледелии, промышленности и строительстве направлены на уничтожение естественных биосистем и популяций. Идеи, что техника спасет мир — иллюзорны. То, что принимается нами за сферу разума - ноосфера, на деле является техносферой, которая безнравственна, и, в конечном счете, способствует уничтожению цивилизации ее же руками. Мы подобны ослепшему гетевскому Фаусту, который думает, что строит прекрасный город, а на самом деле слуги дьявола - лемуры, копают ему могилу. Поэтому, проблемой самого пристального внимания госу- [c.54]

    В ядрах клеток дрожжей, насекомых, червей содержится в 5—10 раз, а у млекопитающих в несколько сотен раз больше ДНК, чем в клетке Е. соИ. Содержание ДНК в расчете на гаплоидный геном в целом увеличивается с возрастанием сложности организма. У амфибий и растений оно сильно варьирует от вида к виду и может значительно (в 10 раз и более) превышать количество ДНК в клетках млекопитающих. Однако было бы неверным считать, что прогрессивная эволюция, как правило, сопровождается увеличением содержания ДНК в расчете на гаплоидный геном. Известны также случаи, когда достаточно близкие виды содержат количество ДНК, различающееся в несколько раз. Это явление описано как парадокс содержания ДНК (англ. С value paradox), который до сих пор не получил достаточно определенного объяснения. Таким образом, размеры геномов не коррелируют с тем количеством ДНК, которое предназначено для выполнения функции кодирования бе.лков. [c.185]

    В ней выделяются районы А и Б. Волнистой чертой отмечена после довательность, необходимая для экспрессии разных генов, кодирующих белки, индуцируемые в условиях теплового шока. Гены, к которым присоединяют этот участок промотора, начинают также активно экспрессироваться при тепловом шоке. В промоторных районах А и Б гена теплового шока дрозофилы подчеркнуты повторяющиеся четырехнуклеотидные мотивы T G и GTT . Наличие района Б необходимо для полной экспрессии гена. Элементы А и Б, взаимодействующие с белковыми факторами транскрипции, имеют сходные функциональные свойства и обладают синергическим действием, активируя транскрипцию. Гены теплового шока дрозофилы, введенные в клетки млекопитающих, начинают активно экспрессироваться при повышении температуры. Это говорит о том, что не только сами гены теплового шока, но и регуляторные компоненты этой системы генов достаточно консервативны в эволюции. [c.200]


    Геном млекопитающих содержит несколько разных семейств коротких повторов. Короткие повторы у птиц и амфибий изучены значительно хуже. Число копий коротких повторов, например наиболее изученных повторов Alu-семейства у человека, составляет 3-10 , что соответствует 5—6% массы ДНК клетки. Такие повторы рассеяны по геному и получили название вездесущих. Повторы Alu могут находиться в интронах, на 5 -флангах генов и, наконец, в составе З -нетранслируемого участка мРНК- Нуклеотидная последовательность Alu-повтора гомологична последовательности отдельных участков 7S РНК. Структура 7S РНК достаточно консервативна у позвоночных, а гомологии в нуклеотидной последовательности прослеживаются и с 7S РНК насекомых, Поэтому семейства коротких повторов, присутствующие у разных видов, предшественником которых служила 7S РНК, также могут обладать достаточной гомологией. В то же время семейства коротких повторов, как и длинных, характеризуются видоспецифичностью, обусловленной амплификацией той или иной копии клеточных РНК, которые к тому же могли быть по-разному модифицированы в результате процессинга. Локализация ретропозонов, внедрившихся в отдельные сайты генома у предков млекопитающих, может, по крайней мере, частично сохраняться в процессе дальнейшей эволюции. Например, места локализации Alu-подобного семейства в межгенных про.межутках кластера глобиновых генов оказались достаточно сходными у мышей и приматов. [c.226]

    Аскорбиновая к-та-восстановитель. С р-рами щелочей образует еноляты, с хлорангидридами высших жирных к-т-сложные эфиры, с катионами металлов (напр., Са Mg " , Fe " )-комплексы. Под влиянием НС1 превращ в фурфурол Аскорбиновая к-та синтезируется всеми хлорофиллсодержащими растениями, пресмыкающимися и земноводными. Беспозвоночные, рыбы, высокоорганизованные виды птиц и нек-рые млекопитающие (напр, человек, обезьяны, морские свинки, ряд летучих мышей) утратили способность к ее биосинтезу в результате потери в ходе эволюции способности этих ор1анизмов к синтезу ряда ферментов [c.384]

    Вся эволюция аэробных организмов, в том числе и человека, обеспечивается побочным продуктом, выделяющимся в этом процессе,— молекулярным кислородом. Имеющийся в кровяном русле млекопитающих специальный пигмент гемоглобин доставляет кислород из легких в клетки и ткани организма. Он состоит из белка глобина, связанного с простетической группой — пигментом, известным под названием гем. Поражает очень близкое сходство в строении гема и хлорофилла. Это дает основание полагать, что в процессе эволюции оба пигмента имеют общее происхождение. [c.216]

    Плацентарные млекопитающие претерпели более быструю эволюцию организмов по сравнению с низшими позвоночными, например с лягушкой. Однако белки млекопитающих специализировались, по-видимому, не быстрее, чем белки лягушки, и лягушки образуют более старшую группу (150 Ма ), чем плацентарные млекопитающие (75 Ма). Вследствие этого виды, настолько близкие по анатомии и способу существования, что их можно отнести к одному виду лягушки (например. Rana), могут отличаться последовательностью аминокислот данного белка так же сильно, как летучая мышь отличается от кита. [c.211]

    В тетрамерном гемоглобине сродство гема к Оа контролируется концентрациями О2, СО2, и 2,3-дифосфоглицерата. Что же было достигнуто в результате эволюции мономерного гемоглобина типа миоглобина в сложный гемоглобин млекопитающих Основное преимущество заключается в возросшей физиологической приспособляемости тетрамерного белка, которая достигнута за счет постепенного перевода сродства к кислороду, свойственного центру связывания, под контроль внеии1их влияний [276, 549, 667] (рис. 10.4). [c.257]

    Моноклональные антитела У млекопитающих в ходе эволюции выработался сложный набор клеточных систем, защищающих организм от токсичных веществ и инфекционных агентов. Составной частью защитной реакции является индуцированная выработка клетками лимфатической системы специфических белков (антител), которые соединяются с чужеродными веществами (антигенами) и при помощи других белков иммунной системы, включая системы комплемента, нейтрализуют их эффект. В ответ на иммунологический стимул каждая антителопродуцирующая клетка синтезирует и вьгделяет единственный вид антител, которые с высоким сродством распознают отдельный участок (эпитоп, антигенную детерминанту) молекулы антигена. Поскольку в мо- [c.184]

    Эукариоты появились 1,5 млрд лет назад, они имели клетку с четко выраженным ядром первые эукариоты были однополыми. В интервале 0,8-1,0 млрд лет появились разнополые эукариоты, которые дали толчок бурному развитию разных форм жизни к концу протерозоя появились зеленые, бурые, красные водоросли. На границе кембрия-докембрия появление многоклеточных организмов повлекло за собой бурное развитие жизни — фауны и флоры. Возможно, что бесскелетная фауна появилась раньше. В вендских отложениях (600 млн лет) найдены отпечатки крупных бесскелетных организмов (эдиакарская фауна), но точная принадлежность этой группы ископаемых не определена. Первые наземные растения фиксируются в конце силура, расцвет их начинается с карбона и продолжается с постоянным увеличением видов вплоть до кайнозоя, с начала кайнозоя — млекопитающие, а в конце кайнозоя — человек (Homo sapiens) — вершина эволюции живого вешества. [c.108]

    Отсутствие половых хромосом у диких и культурных растений устраняет самый важный барьер на пути полиплоидии, распространенной среди них в сотни раз чаще, чем среди культурных животных, особенно млекопитающих. Наличие строгого контроля половых хромосом, свойственного животным, резко уменьшает возможности полиплоидии. В подавляющем большинстве случаев ее возникновение в гомогаметпческом поле ведет к очень редко преодолимым аномалиям баланса половых хромосом у гетерохромосомного пола, поэтому полиплоидия в эволюции высших животных представляет большую редкость. У растений, не имеющих, за известными исключениями, половых хромосом, полиплоидия возникает чаще и является важной формой эволюции растений. Надо все же заметить, что даже у растений с хромосомной детерминацией пола последняя является гораздо менее строгой, и у большинства родов растений, несущих ноло-вые хромосомы, имеются полиплоидные виды. Скорее всего это возникает потому, что наличие половой детерминации пола у растений не уподобляет их животным по нормировке непрерывности зародышевой плазмы. [c.24]

    Основной чертой многоклеточного организма является распределение функций между различными типами клеток. В ходе эволюции это распределение становилось все более и более существенным, пока не достигло наивысшего уровня у млекопитающих, включая человека. Высокоспецпализированные клетки многоклеточных организмов формируют различные ткани, которые, в свою очередь, образуют всевозможные органы. В тканях клетки находятся в контакте со сложной сетью межклеточных полимеров, в первую очередь специальных белков и полисахаридов, образуя внеклеточный лгатрикс. Б ряде случаев клетки соприкасаются непосредственно друг с другом. В многоклеточных организмах как процессы воспроизводства, так и метаболизм, включая производство энергии, протекают несравнимо сложнее, чем в одноклеточных. [c.26]

    Так или иначе, в живой природе преобладают четные кислоты. Примечательно, что в ходе эволюции в результате усоверщенствования ферментных систем прослеживается четкая тенденция к уменьшению разнообразия жирных кислот. Если жиры простейших организмов представляют собой обычно смесь глицеридов множества различных кислот, то у млекопитающих основными являются всего-навсего три кислоты-олеиновая, пальмитиновая и стеариновая. А теперь представим, что при разложении жирных кислот произошла только одна реакция декарбоксилирования, т.е. отщепление СО2 от карбоксильной группы —СООН. Очевидно, в таком случае мы получим углеводороды в основном с нечетным числом атомов углерода. Возможен ли такой процесс в живом организме По-видимому, возможен, так как соответствующие углеводороды встречаются в организмах в свободном состоянии. Обычно их очень мало-тысячные доли процента, однако у рыб их может быть до 0,12%. [c.126]

    Эволюция осуществляется по большей части путем мелких усовершенствований-изменяются обычно лишь пропорции тела, а не фундаментальные принципы его построения. Это дает нам возможность рассматривать общие черты развития всех позвоночных, не обсуждая каждую их группу в отдельности. Мы уже видели, что эмбрионы различных животных гораздо более сходны между собой, чем взрослые формы (рис. 15-15) дифференциальный рост отдельных структур, приводящий, например, к развитию длинного клюва у птиц или крупного мозга у человека, встречается сравнительно редко, Черты сходства, ставпше совершенно незаметными у взрослых животных, могут быть ясно видны на ранних стадиях. Например, в жаберных дугах эмбриона млекопитающего легко опознаются зачатки рыбьих жабр но позже эти зачатки сливаются, и из них вместо органов водного дыхания образуются совсем другие структуры. Причины консервативности эволюции ранних зародышей понятны. То, что образовалось на ранней стадии, используется затем в качестве каркаса, на котором основывается дальнейшее развитие даже небольшое изменение исходной структуры может нарушить многие последующие процессы, определяемые этими исходными структурами. Вероятно, мутации, затрагивающие раннее развитие, должны в больпшнстве случаев отметаться естественным отбором и сохраняются очень редко. [c.66]

    Бактериальная нитрогеназа инактивируется свободным кислородом, поэтому время ее полужизни иа воздухе очень коротко. Это означает, что в процессе эволюции должны были выработаться сложные механизмы, способные обеспечить бактероидам анаэробные условия в клетках корня при достаточном снабжении кислородом самих корней. В частности. Rhizobium индуцирует в клетках хозяина синтез леггелоглобиня-связывающего кислород белка, аналогичного миоглобину млекопитающих Молекулы леггемоглобниа, окружая бактероиды, препятствуют избыточному снабжению их кислородом. [c.179]

    Этапы эволюции I — образование Земли Л- микроокаменелости III — самые древние многоклеточные ископаемые организмы (Illa — сине-зеленые водоросли) IV — самые ранние позвоночные V — наземные растения VI — млекопитающие VII — человек. [c.206]

    Таким образом, этот метаболический путь предстайляет собой еще один потенциальный механизм анаэробного синтеза АТФ. НАД для пнруватдегидрогеназы, так же как и в случае а-кетоглутаратдегидрогеназы, может регенерироваться с помощью фумаратредуктазы. Вероятно, этот путь более выгоден для тех факультативных анаэробов, для которых глюкоза служит единственным источником углерода и энергии. В отличие от этого у двустворчатых моллюсков концентрации свободных аминокислот могут быть в 100 раз выше, чем в тканях млекопитающих, и эти вещества считают важным потенциальным источником энергии. Для таких организмов, вероятно, более выгоден путь, проходящий через а-кетоглутарат, поскольку в этом случае обмен глюкозы оказывается сопряженным с катаболизмом аминокислот. Возможно даже, что именно наличие аминокислот привело в ходе эволюции к появлению у пируват-дегидрогеназы новой функции, состоящей в генерировании аце-тил-КоА для конденсации с оксалоацетатом, в результате которой образуется цитрат. [c.71]

    Адаптация к солености путем выработки различных вариантов Na+K -АТФазы. Большая скорость эволюции Na+K -АТФазы указывает на высокую степень ее потенциальной функциональной гибкости , а также на то, что этот фермент испытывает очень сильное давление отбора. В результате обширных исследований Бонтинга и других авторов в настоящее время общепризнано, что Na+K -АТФаза, вероятно, распространена во всем животном царстве. Активность ее наиболее высока в тех тканях, главная функция которых состоит в переносе электролитов, но в меньших количествах она содержится и в большинстве других тканей тела. Хотя этот фермент обычно везде, где он имеется, специфически переносит Na+ и какой-либо противоион, например К", этот процссс обслуживает в разных тканях различные физиологические функции. В нервной ткани он участвует в реполяризации мембраны после проведения имиульса. В почке он постепенно усиливается по направлению к дистальному концу петли Генле и играет роль в реабсорбции Na+ из ультрафильтрата этот процесс создает движущую силу , необходимую для работы иротивоточного механизма концентрирования мочи. В кишечнике же фермент переносит Na+ через кишечную стенку. В улитке — органе, преобразующем звуковые сигналы в нервное возбуждение, — этот фермент ответствен за поддержание больших концентрационных различий между одной камерой, содержащей эндолимфу (внеклеточная жидкость с 12 мМ Na+), и двумя окружающими камерами, которые содержат перилимфу (внеклеточная жидкость с 150 мМ Na+). (Подробнее о функциях АТФазы в различных тканях млекопитающих см. у Бонтинга, 1970.) [c.148]

    После выхода на сушу в эволюции различных групп позвоночных происходила дивергенция в отношении способов переработки азотистых шлаков. Хотя стволовые формы рептилий возникли как уреотелические организмы, большинству современных рептилий (и птицам) свойственна урикотелия — выделение мочевой кислоты. Однако и у сумчатых, и у плацентарных млекопитающих сохранилась уреотелия. [c.171]

    Если мы примем, хотя бы предположительно, вывод о том, что ферменты эктотермных организмов эффективнее гомологичных ферментов млекопитающих, то перед нами встанет весьма интригующий вопрос. Принимая, что млекопитающие действительно произошли от какого-то эктотермного предка, уже обладавшего высокоэффективными катализаторами, как можно объяснить видимую функциональную деградацию последних в процессе дальнейшей эволюции Иными словами, как объяснить утрату чего-то такого, что, по-видимому, дает организму преимущество  [c.256]

    В процессе эволюции сформировались различные типы азотистого обмена, которые классифицируются по основному конечному продукту 1) аммониотелический тип, главный конечный продукт — аммиак (рыбы) 2) урикотелический тип, главный конечный продукт — мочевая кислота (рептилии,,птицы) 3) уреотелический тип, главный конечный продукт — мочевина (млекопитающие). [c.259]


Библиография для Млекопитающие эволюция III: [c.134]   
Смотреть страницы где упоминается термин Млекопитающие эволюция III: [c.29]    [c.225]    [c.206]    [c.207]    [c.32]    [c.200]    [c.206]    [c.207]    [c.625]    [c.226]    [c.76]    [c.140]    [c.339]   
Биология Том3 Изд3 (2004) -- [ c.291 , c.292 , c.297 , c.305 , c.388 ]




ПОИСК







© 2025 chem21.info Реклама на сайте